Tìm X :
\(\sqrt{X-2}\) < 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
thế này ms đúng ajk. xin lỗi bn mk ghi nhầm dấu
a ) \(ĐKXĐ\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2+\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b ) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{4}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Vậy với \(0\le x\le9;x\ne4\) thì ...
Chúc bạn học tốt !!!
a)Áp dụng BĐT C-S ta có:
\(A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Đẳng thức xảy ra khi x=3
b)Tiếp tục áp dụng BĐT C-S
\(B^2=\left(\sqrt{x}+\sqrt{2-x}\right)^2\)
\(\le\left(1+1\right)\left(x+2-x\right)=4\)
\(\Rightarrow B^2\le4\Rightarrow B\le2\)
Xảy ra khi x=1
đk \(x-2\ge0\Leftrightarrow x\ge2\)
\(\sqrt{x-2}< 5\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2< 25\)
\(\Leftrightarrow x-2< 25\)
\(\Leftrightarrow x< 27\)
vậy \(2\le x< 27\)
\(\sqrt{x-2}< 5\)
ĐKXĐ : \(x\ge2\)
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2< 5^2\)
\(\Leftrightarrow x-2< 25\)
\(\Leftrightarrow x< 27\)
Kết hợp ĐKXĐ => \(2\le x< 27\)