K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 9 2020

\(\Leftrightarrow4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow4-2sin^22x+\sqrt{3}sin4x=2\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-1\)

\(\Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\)

\(\Leftrightarrow cos\left(4x-\frac{\pi}{3}\right)=-\frac{1}{2}\)

\(\Leftrightarrow...\)

1 tháng 8 2020

\(d\text{) }4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow4\left(1-2sin^2x\cdot cos^2x\right)+\sqrt{3}sin4x=2\\ \Leftrightarrow-8sin^2x\cdot cos^2x+\sqrt{3}sin4x=-2\\ \Leftrightarrow-2sin^22x+\sqrt{3}sin4x=-2\\ \Leftrightarrow cos4x-1+\sqrt{3}sin4x=-2\\ \Leftrightarrow\frac{1}{2}cos4x+\frac{\sqrt{3}}{2}sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\frac{\pi}{6}\cdot cos4x+cos\frac{\pi}{6}\cdot sin4x=-\frac{1}{2}\\ \Leftrightarrow sin\left(4x+\frac{\pi}{6}\right)=sin\frac{-\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{6}=\frac{-\pi}{6}+a2\pi\\4x+\frac{\pi}{6}=\frac{7\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{12}+\frac{a\pi}{2}\\x=\frac{\pi}{4}+\frac{b\pi}{2}\end{matrix}\right.\)

\(e\text{) }4sinx\cdot cosx\cdot cos2x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x+cos4x=\sqrt{2}\\ \Leftrightarrow sin4x\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}cos4x=1\\ \Leftrightarrow sin4x\cdot cos\frac{\pi}{4}+cos4x\cdot sin\frac{\pi}{4}=1\\ \Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{16}+\frac{k\pi}{2}\)

1 tháng 8 2020

\(\text{a) }cos^2x+sin2x-1=0\\ \Leftrightarrow2sinx\cdot cosx-sin^2x=0\\ \Leftrightarrow sinx\left(2cosx-sinx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=2cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=a\pi\\x=arctan\left(2\right)+b\pi\end{matrix}\right.\)

\(\text{b) }\sqrt{3}sin2x+cos^4x-sin^4x=\sqrt{2}\\ \Leftrightarrow\sqrt{3}sin2x+\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=\sqrt{2}\\ \Leftrightarrow\frac{\sqrt{3}}{2}\cdot sin2x+\frac{1}{2}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sin2x+sin\frac{\pi}{6}\cdot cos2x=\frac{\sqrt{2}}{2}\\ \Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\frac{\pi}{4}\\ \\ \Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=\frac{\pi}{4}+a2\pi\\2x+\frac{\pi}{6}=\frac{3\pi}{4}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{24}+a\pi\\x=\frac{7\pi}{24}+b\pi\end{matrix}\right.\)

\(c\text{) }cos^2x-sin^2x=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\\ \Leftrightarrow cos^2x-sin^2x=\sqrt{2}\left(sinx\cdot\frac{\sqrt{2}}{2}+cosx\cdot\frac{\sqrt{2}}{2}\right)\\ \Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)=sinx+cosx\\ \Leftrightarrow\left[{}\begin{matrix}cosx-sinx=1\\sinx=-cosx\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos^2x+\left(cosx-1\right)^2=1\\tanx=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\\tanx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+a\pi\\x=b2\pi\\x=\frac{3\pi}{4}=c\pi\end{matrix}\right.\)

NV
2 tháng 1

Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.

1.

\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)

\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)

2.

\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)

3.

\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)

\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)

NV
2 tháng 1

4.

\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

5.

\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)

NV
6 tháng 8 2021

\(cos^3xsinx-sin^3xcosx=sinx.cosx\left(cos^2x-sin^2x\right)=\dfrac{1}{2}sin2x.cos2x=\dfrac{1}{4}sin4x\)

\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2=1-\dfrac{1}{2}sin^22x\)

\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x=\dfrac{1}{4}\left(3+cos4x\right)\)

1 tháng 6 2021

\(4\left(sin^4x+cos^4x\right)+sin4x-2=0\)

\(\Leftrightarrow4\left(1-2sin^2x.cos^2x\right)+2sin2x.cos2x-2=0\)

\(\Leftrightarrow2-2sin^22x+2sin2x.cos2x=0\)

\(\Leftrightarrow2\left(1-sin^22x+sin2x.cos2x\right)=0\)

\(\Leftrightarrow2\left(cos^22x+sin2x.cos2x\right)=0\)

\(\Leftrightarrow2cos2x\left(cos2x+sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x+sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2};x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\)

25 tháng 6 2021

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=0\end{matrix}\right.\)

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}cos2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\cos2x=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\2x=\dfrac{3\pi}{4}+k2\pi\\2x=\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{3\pi}{8}+k\pi\\x=\dfrac{\pi}{8}+k\pi\end{matrix}\right.\)

25 tháng 6 2021

a, \(cos^2x-cosx=0\)

\(\Leftrightarrow cosx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\) (k ∈ Z)

Vậy...

b, \(2sin2x+\sqrt{2}sin4x=0\)

\(\Leftrightarrow2sin2x+2\sqrt{2}sin2x.cos2x=0\)

\(\Leftrightarrow2sin2x\left(1+\sqrt{2}cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\dfrac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\pm\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\pm\dfrac{3\pi}{8}+k\pi\end{matrix}\right.\)

Vậy...

c, \(8cos^2x+2sinx-7=0\)

\(\Leftrightarrow8\left(1-sin^2x\right)+2sinx-7=0\)

\(\Leftrightarrow8sin^2x-2sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=-\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=arcsin\left(-\dfrac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\dfrac{1}{4}\right)+k2\pi\end{matrix}\right.\)

Vậy...

d, \(4cos^4x+cos^2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x=\dfrac{3}{4}\\cos^2x=-1\left(loai\right)\end{matrix}\right.\) 

\(\Leftrightarrow\dfrac{cos2x+1}{2}=\dfrac{3}{4}\)

\(\Leftrightarrow cos2x=\dfrac{1}{2}\)

\(\Leftrightarrow2x=\pm\dfrac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k\pi\)

Vậy...

e, \(\sqrt{3}tanx-6cotx+\left(2\sqrt{3}-3\right)=0\) (ĐK: \(x\ne\dfrac{k\pi}{2}\))

\(\Leftrightarrow\sqrt{3}tanx-\dfrac{6}{tanx}+\left(2\sqrt{3}-3\right)=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\left(tm\right)\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

Vậy...