K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Giải nhanh nha! mình sẽ k cho.

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

15 tháng 2 2018

ha ha hah hahahahha

19 tháng 2 2018

Đã không trả lời lại còn cười! 

8 tháng 11 2016

Giải bằng Tiếng Việt thím nhá =))

Giả sử cả 5 số a; b; c; d; e đều lẻ

=> a2; b2; c2; d2; e2 cũng đều lẻ

Ta đã biết số chính phương chia cho 8 chỉ có thể dư 0; 1 hoặc 4 nếu số chính phương đó thuộc N

Mà a2; b2; c2; d2; e2 lẻ nên cả 5 số này đều chia 8 dư 1

=> g2 = a2 + b2 + c2 + d2 + e2 chia 8 dư 5, không là số chính phương

Do đó, trong 5 số a; b; c; d; e; g tồn tại ít nhất 1 số chẵn

=> abcdeg chia hết cho 2 (đpcm)

8 tháng 11 2016

Đúng y như cách giải của t luôn :)