Giải PT: y^2=x^2(y+2)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3x^2+3y^2-3x-3y+6=2xy+2x\sqrt{y-1}+2y\sqrt{x-1}+2\sqrt{\left(x-1\right)\left(y-1\right)}\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x\sqrt{y-1}+y-1\right)+\left(y^2-2y\sqrt{x-1}+x-1\right)+\left(x-1-2\sqrt{\left(x-1\right)\left(y-1\right)}\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\sqrt{y-1}\right)^2+\left(y-\sqrt{x-1}\right)^2+\left(x-2\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow x=y=2\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
Ta có:
\(\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\4\sqrt{x}-\sqrt{y-1}=2\end{matrix}\right.\) (đk \(x\ge0,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\8\sqrt{x}-2\sqrt{y-1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}=9\\\sqrt{x}+2\sqrt{y-1}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\1+2\sqrt{y-1}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\sqrt{y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\left(tm\right)\)
a.
ĐKXĐ: \(x\ne\pm y\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=2\\2u+3v=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3u+3v=6\\2u+3v=5\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=2-u\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=1\\\dfrac{1}{x-y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x-y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+7=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-5x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+xy=-1\left(1\right)\\x^2+y^2-xy=7\end{matrix}\right.\)\(\Rightarrow x^2+y^2+x+y=6\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+x+y=6\)
\(\Leftrightarrow xy=\frac{\left(x+y\right)^2+x+y-6}{2}\)
Thay vào (1):\(2x+2y+\left(x+y\right)^2+x+y-6=-2\)
\(\Rightarrow\left[{}\begin{matrix}x+y=1\\x+y=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}xy=-2\\xy=3\end{matrix}\right.\)
Vậy x,y là nghiệm của pt:\(\left[{}\begin{matrix}X^2-X-2=0\\X^2+4X+3=0\end{matrix}\right.\)
Đến đây tự tìm x,y.
ĐK: \(x\ne0\) ; \(y\ne0\)
Hệ phương trình tương đương với:
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=8\end{matrix}\right.\)
Đặt \(S=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)\)
\(P=\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\)
Mà \(S^2\ge4P\)
Ta có: \(\left\{{}\begin{matrix}S=4\\S^2-2P=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=4\\P=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Bài này là giải phương trình nghiệm nguyên nhé !
Ta có : \(y^2=x^2.\left(y+2\right)+1\)
\(\Leftrightarrow x^2.\left(y+2\right)=y^2-1\)
\(\Leftrightarrow x^2=\frac{y^2-1}{y+2}=\frac{y^2-4+3}{y+2}=y-2+\frac{3}{y+2}\)
Do \(x^2\) nguyên nên \(3⋮y+2\)
\(\Leftrightarrow y+2\in\left\{-1,1,-3,3\right\}\)
\(\Leftrightarrow y\in\left\{-3,-1,-5,1\right\}\)
\(\Rightarrow\) Bạn tự tính giá trị của x nhé !