Bài 1: Trong đợt thi đua chào mừng ngày nhà giáo Việt Nam, tổ 1 ,tổ 2, tổ 3 của lớp 7A đạt số điểm tỉ lệ với 3;4;2 . Biết rằng 5 lần bình phương số điểm của tổ 1 cộng với 7 lần bình phương số điểm của tổ 3 nhiều hơn bình phương số điểm của tổ 2 là 1282500 điểm. Tính số điểm mỗi tổ đạt được?
Bài 2: CMR nếu a/b = c/d thì 11a + 7b/11a - 7b = 11c + 7d/11c - 7d
Hộ mik cái nha! (có làm thì mới có tick đúng ko ae)
Gọi số điểm của tổ 1 là a ; số điểm của tổ 2 là b ; số điểm của tổ 3 là c (a;b;c .> 0)
Ta có \(\frac{a}{3}=\frac{b}{4}=\frac{c}{2}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{2}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=2k\end{cases}}\)
Lại có 5a2 + 7c2 - b2= 1282500
<=> 5(3k)2 - (4k)2 + 7(2k)2 = 1282500
=> 45k2 - 16k2 + 28k2 = 1282500
=> k2(45 - 16 + 28) = 1282500
=> k2.57 = 1282500
=> k2 = 22500
=> k2 = 1502
=> k = \(\pm\)150
=> k = 150 (Vì a ; b ; c > 0)
Khi k = 150 => a = 450 ; b = 600; c = 300
Vậy nhóm 1 có 450 điểm ; nhóm 2 có 600 điểm ; nhóm 3 co 300 điểm
2) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{11a+7b}{11a-7b}=\frac{11bk+7b}{11bk-7b}=\frac{b\left(11k+7\right)}{b\left(11k-7\right)}=\frac{11k+7}{11k-7}\left(1\right)\);
\(\frac{11c+7d}{11c-7d}=\frac{11dk+7d}{11dk-7d}=\frac{d\left(11k+7\right)}{d\left(11k-7\right)}=\frac{11k+7}{11k-7}\left(2\right)\)
Từ (1) (2) => \(\frac{11a+7b}{11a-7b}=\frac{11c+7d}{11c-7d}\)(đpcm)