K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2023

Bạn nên dùng công thức trực quan cho bài toán như thế này nhé.

`@` `\text {Ans}`

`\downarrow`

`2+(x+3)=7`

`\Rightarrow x+3=7-2`

`\Rightarrow x+3=5`

`\Rightarrow x=5-3`

`\Rightarrow x=2`

`5+(3+x)=10`

`\Rightarrow 3+x=10-5`

`\Rightarrow 3+x=5`

`\Rightarrow x=5-3`

`\Rightarrow x=2`

`(4+x)+1=7`

`\Rightarrow 4+x=7-1`

`\Rightarrow 4+x=6`

`\Rightarrow x=6-4`

`\Rightarrow x=2`

`(x+5)+3=9`

`\Rightarrow x+5=9-3`

`\Rightarrow x+5=6`

`\Rightarrow x=6-5`

`\Rightarrow x=1`

`(x-1)-4=7`

`\Rightarrow x-1=7+4`

`\Rightarrow x-1=11`

`\Rightarrow x=11+1`

`\Rightarrow x=12`

`4-(6-x)=1`

`\Rightarrow 6-x=4-1`

`\Rightarrow 6-x=3`

`\Rightarrow x=6-3`

`\Rightarrow x=3`

19 tháng 6 2023

\(2+\left(x+3\right)=7\)

\(\Rightarrow2+x+3=7\)

\(\Rightarrow x+5=7\)

\(\Rightarrow x=2\)

\(5+\left(3+x\right)=10\)

\(\Rightarrow5+3+x=10\)

\(\Rightarrow x+8=10\)

\(\Rightarrow x=2\)

\(\left(4+x\right)+1=7\)

\(\Rightarrow4+x+1=7\)

\(\Rightarrow x+5=7\)

\(\Rightarrow x=2\)

\(\left(x+5\right)+3=9\)

\(=x+5+3=9\)

\(\Rightarrow x+8=9\)

\(\Rightarrow x=1\)

\(\left(x-1\right)-4=7\)

\(\Rightarrow x-1-4=7\)

\(\Rightarrow x-5=7\)

\(\Rightarrow x=12\)

\(4-\left(6-x\right)=1\)

\(\Rightarrow4-6-x=1\)

\(\Rightarrow-2-x=1\)

\(\Rightarrow x=-3\)

7 tháng 2 2022

a) \(\text{​​}/3x-5/-\frac{1}{7}=\frac{1}{3}\)                           b)\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)

  \(/3x-5/=\frac{10}{21}\)                                           \([x.\left(\frac{3}{5}-\frac{2}{3}-1\right)]=\frac{-5}{21}.7\)

  

 \(\Rightarrow3x-5=\frac{10}{21}hay3x-5=\frac{-10}{21}\)         \(\left[x.\frac{-16}{15}\right]=\frac{-5}{3}\)

\(3x=\frac{115}{21}\)                \(3x=\frac{95}{21}\)                         \(x=\frac{25}{16}\)

\(x=\frac{115}{63}\)                  \(x=\frac{95}{63}\)                             Vậy x = \(\frac{25}{16}\)

                      Vậy x \(\in\left\{\frac{115}{63};\frac{95}{63}\right\}\)

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

Bài 4:

a) Ta có: \(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^7\right)-\left(x^6-x^4\right)-\left(x^5-x^3\right)+\left(x^2-1\right)\)

\(=x^7\left(x^2-1\right)-x^4\left(x^2-1\right)-x^3\left(x^2-1\right)+\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^7-x^4-x^3+1\right)\)

\(=\left(x^2-1\right)\cdot\left[x^4\left(x^3-1\right)-\left(x^3-1\right)\right]\)

\(=\left(x^2-1\right)\cdot\left(x^3-1\right)\cdot\left(x^4-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x-1\right)\left(x^2+x+1\right)\cdot\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)^2\cdot\left(x^2+1\right)\cdot\left(x^2+x+1\right)\)

5 tháng 8 2020

a, Ta có : \(x^5-x^4-x^3-x^2-x-2\)

\(=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2\)

\(=x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)

\(=\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)\)

a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

hay \(x=-\dfrac{1}{4}\)

c) Ta có: \(8x^3-50x=0\)

\(\Leftrightarrow2x\left(4x^2-25\right)=0\)

\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)