Khảo sát và vẽ đồ thị hàm số : - x3 + 3x2 -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên các khoảng (-∞; -2) và (0; +∞).
Hàm số nghịch biến trên khoảng (-2; 0).
Hàm số đạt cực tiểu tại x = 0 ; y C T = 1 .
Hàm số đạt cực đại tại x = -2 ; y C Đ = 5 .
- Đồ thị:
+ Giao với Oy: (0; 1).
+ Đồ thị (C) đi qua điểm (–3; 1), (1; 5).
+ Giới hạn:
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên (-1; 3)
Hàm số nghịch biến trên (-∞; -1) và (3; +∞).
Hàm số đạt cực đại tại x = 3, yCĐ = 29.
Hàm số đạt cực tiểu tại x = -1; y C T = - 3
- Đồ thị:
+ Giao với trục tung tại (0; 2).
+ Đi qua các điểm (-2; 4); (2; 24).
a) TXĐ: R
📷
y’>0 trên khoảng (-∞; -2)và (0; +∞)
y'<0 trên khoảng (-2; 0)
yCĐ=y(-2)=0; yCT=y(0)=-4
📷
y”=6x+6=6(x+1)=0 <=> x = -1
Bảng xét dấu y’’
X-∞-1+∞Y’’–0+Đồ thịLồiđiểm uốn u(-1; -2)lõm
Hàm số lồi trên khoảng (-∞; -1)
Hàm số lõm trên khoảng -1; +∞)
Hàm số có 1 điểm uốn u(-1; -2)
Bảng biến thiên:
📷
Đồ thị
Đi qua điểm (1; 0) và (-3; -4)
b) Hàm số y=x3+3x2-4 có điểm uốn u(-1; -2)
Ta có: y’=3x2-4 ; y’(-1) = -3
Phương trình tiếp tuyến tại điểm uốn u(-1; -2) có dạng
y-y0=y'(x0)(x-x0)
<=> y+2=-3(x+1)
<=> y=-3x-5
Vậy phương trình tiếp tuyến tại điểm uốn là: y = -3x – 5.
📷
c) Đồ thị nhận I(-1; -2) là tâm đối xứng khi và chỉ khi:
f(x0+x)+f(x0-x)=2y0 với ∀x
<=> f(x-1)+f(-x-1)=-4 ∀x
<=> (x-1)3+3(x-1)2-4+(-1-x)3+3(-1-x)2-4 ∀x
<=> x3-3x2+3x-1+3x2-6x+3-5-3x-3x2-x3+3+6x+3x2-4=-4 ∀x
<=>-4=4 ∀x
=> I(-1; -2) là tâm đối xứng của đồ thị.
bạn vào chính câu hỏi này của bạn trong bingbe xem
Khảo sát hàm số y = 1 2 x 4 - 3 x 2 + 3 2
- TXĐ: D = R
- Sự biến thiên:
+ Chiều biến thiên:
+ Giới hạn tại vô cực:
+ Bảng biến thiên:
Hàm số đạt cực đại tại x = 0, yCĐ = 3 2
Hàm số đạt cực tiểu tại x = ; yCT = -3.
- Đồ thị:
+ Đồ thị hàm số nhận trục tung là trục đối xứng.
+ Đồ thị cắt trục tung tại (0; 1,5).
TXĐ: D = R
Sự biến thiên:
y′ = 3 x 2 – 6x = 3x(x – 2)
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (– ∞ ;0), (2;+ ∞ )
Hàm số nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0 ; y CĐ = y(0) = 0
Hàm số đạt cực tiểu tại x = 2; y CT = y(2) = -4.
Giới hạn:
Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2
Suy ra đồ thị có điểm uốn I(1; -2)
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).
y = 4 x 3 + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R
Bảng biến thiên:
Đồ thị: