K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

( 1/2 + x )2 = ( 1/2 )2 + 2.1/2.x + x2 = x2 + x + 1/4

( 2x + 1 )2 = ( 2x )2 + 2.2x.1 + 12 = 4x2 + 4x + 1

11 tháng 9 2021

\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)

11 tháng 9 2021

a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)

3 tháng 7 2018

\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)

\(=x^2+x^2+1+3x^2+4+4x^2+9\)

\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)

\(=2x^2+1+3x^2+3+4x^2+9+1\)

Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé

17 tháng 7 2017

\(x^2-x+\frac{1}{4}\)

\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)

\(=\left(x-\frac{1}{2}\right)^2\)

12 tháng 11 2023

\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)

\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)

\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)

\(=10x^2+16x+50\)

 

13 tháng 11 2023

dưới dạng tổng các bình phương mà

31 tháng 8 2021

a. (x + y)2 = x2 + 2xy + y2

b. (x - 2y)2 = x2 - 4xy - 4x2

c. (xy2 + 1)(xy2 - 1) = x2y4 - 1

d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4

Chucs hocj toots

Câu 2: 

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(x^2+10x+25=\left(x+5\right)^2\)

d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)

e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)

9 tháng 7 2018

(x+1)(x^2 - x + 1)

=x^3 - x^2 + x + x^2 -x +1

9 tháng 7 2018

= x^3 +1

17 tháng 7 2021

`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`

`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`

`=(x/2+y-2z)^3`

Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)

\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)

\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)

10 tháng 7 2018

\(\left(x^2+2x-1\right)^2\)

\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1\)

\(=x^4+4x^3-2x^2+4x^2+4x+1\)

\(=x^4+4x^3+2x^2+4x+1\)