Tính nhanh tổng sau:
A=1/3+1/9+1/27+...+1/2187+1/6561
Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}\)
\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(3A-A=\left[1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right]-\left[\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right]\)
\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}:2\)
\(A=\frac{3280}{6561}\)
Vậy : ...
\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)
\(3B=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{6561}\right)\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2B=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{6561}\right)\)
\(2B=0+0+...+1-\dfrac{1}{6561}\)
\(2B=1-\dfrac{1}{6561}\)
\(B=\left(1-\dfrac{1}{6561}\right):2\)
\(B=\dfrac{6560}{6561}:2\)
\(B=\dfrac{3280}{6561}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=3-\frac{1}{3^7}\)
\(S=\frac{3-\frac{1}{3^7}}{2}\)
S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)+ \(\frac{1}{2187}\).
=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\).
=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\).
=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\)).
=> 2S= 3- \(\frac{1}{3^7}\).
=> 2S= 3- \(\frac{1}{2187}\).
=> 2S= \(\frac{6560}{2187}\).
=> S= \(\frac{6560}{2187}\): 2.
=> S= \(\frac{3280}{2187}\).
Vậy S= \(\frac{3280}{2187}\).
C = 1 + 2 + 4 + 8 + ... + 1024
2 x C = 2 + 4 + 8 + ... + 1024 + 2048
2 x C - C = C = (2 + 4 + 8 + ... + 1024 + 2048) - (1 + 2 + 4 + 8 + ... + 1024) = 2048 - 1 = 2047
D = 1 + 3 + 9 + 27 + ... + 2187
3 x D = 3 + 9 + 27 + ... + 2187 + 6561
3 x D - D = 2 x D = (3 + 9 + 27 + ... + 2187 + 6561) - (1 + 3 + 9 + 27 + ... + 2187) = 6561 - 1 = 6560
D = 6560 : 2 = 3280
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
Mình giúp bạn nè
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A-A=\left(3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(\Rightarrow2A=3-\frac{1}{2187}=\frac{6561}{2187}-\frac{1}{2187}=\frac{6560}{2187}\)
\(\Rightarrow A=\frac{6560}{2187}:2=\frac{3280}{2187}\)
Bài làm:
Ta có: \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
=> \(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
<=> \(2A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)
=> \(A=\frac{3^8-1}{3^8.2}\)
Bài làm :
Ta có :
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\Rightarrow3\times A=\frac{1\times3}{3}+\frac{1\times3}{9}+\frac{1\times3}{27}+...+\frac{1\times3}{6561}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\left(\frac{1}{6561}-\frac{1}{6561}\right)\)
\(3\times A=1+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\frac{1}{6561}\right)-\frac{1}{6561}\)
\(3\times A=1+A-\frac{1}{6561}\)
\(\Rightarrow2\times A=1-\frac{1}{6561}\)( Trừ bỏ A ở cả 2 vế )
\(2\times A=\frac{6560}{6561}\)
\(A=\frac{6560}{6561}\div2=\frac{3280}{6561}\)
Vậy A=3280/6561
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!