K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

Áp dụng định lý py-ta-go vào tam giác AHC vuông tại H có :

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AH^2=AC^2-HC^2\)

\(\Leftrightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)

Áp dung hệ thức lượng vào tam giá ABC vuông tại A , ta có :

+) \(AH^2=BH.HC\)

\(\Leftrightarrow9=BH.4\)

\(\Leftrightarrow BH=\frac{9}{4}\left(cm\right)\)

+) \(AB^2=AH.BH\)

\(\Leftrightarrow AB^2=\left(4+\frac{9}{4}\right).\frac{9}{4}=\frac{225}{16}\left(cm\right)\)

+) \(BC=4+\frac{9}{4}=\frac{25}{4}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{3}=\frac{16}{3}$ (cm)

$BC=BH+CH=3+\frac{16}{3}=\frac{25}{3}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{4^2+(\frac{16}{3})^2}=\frac{20}{3}$ (cm)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

5 tháng 2 2022

Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:

\(AC^2=AH^2+HC^2\) (định lí pitago)

\(\Rightarrow AH^2=AC^2-HC^2\)

\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)

\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)

\(\Rightarrow AB=3,75\left(cm\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí pitago)

\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)

\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)

\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=4+2,25=6,25(cm)

\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)

28 tháng 4 2018

a) Xét tam giác ABC : AB2+AC2= 32+42=9+16=25(cm) và BC2= 52= 25 => AB2+AC2=BC2(=25)  =>tam giác ABC vuông tại A (định lí pi-ta-go đảo)

+) Xét tam giác AHB và tam giác CHA:

góc AHB = góc CHA(=900)

góc BAH = góc ACH ( cùng phụ với  góc HAC)

=> tam giác AHB ~ tam giác CHA ( g-g)

+) Xét tam giác HCA và tam giác ACB:

góc AHC = góc BAC(=900)

góc ACB chung

=> tam giác HCA ~ tam giác ACB (g-g)

b)  Có: tam giác HCA ~ tam giác ACB(phần a) => AH/AB = AC/BC => AH/3 = 4/5 => AH= 4/5x3 = 2,4 (cm)

Áp dụng định lí Pi-ta-go trong tam giác AHB vuông tại H :

AH2+BH2 = AB<=> 2,42+ BH2 = 32 <=> 5,76+BH2 = 9 <=> BH= 9-5,76 <=> BH2 = 3,24 <=>. BH= căn 3,24 <=> BH =1,8 (cm)

Có: tam giác AHB ~ tam giác CHA( phần a) => AH/HC = BH/AH <=> AH2 = BHxHC <=> 2,42 = 1,8+HC <=> HC= 5,76-1,8 <=> HC=3,96 (cm)

 Vậy AH=2,4cm; BH=1,8cm; HC=3,96cm

CÒN CÂU C THÌ MIK KO BIẾT.  :P

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. BIẾT AC=4cm, BC-5cm, góc ABC=30 a) Tính độ dài AB, AH b)Từ H lần lượt dùng các đường thẳng song song với AB và AC các đường thẳng này cắt AB tại E và AC tại F. Chứng minh BE. HC=HB.HF. Bài 5.Cho tam giác ABC vuông tại , có đường cao AH. Biết rằng AC Son AB=ACH a) Tính cạnh AH HB HC và BC b) Gọi p là hình chiếu của H xuống 48. Chứng minh rằng AP AR MW...
Đọc tiếp

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. BIẾT AC=4cm, BC-5cm, góc ABC=30 a) Tính độ dài AB, AH b)Từ H lần lượt dùng các đường thẳng song song với AB và AC các đường thẳng này cắt AB tại E và AC tại F. Chứng minh BE. HC=HB.HF. Bài 5.Cho tam giác ABC vuông tại , có đường cao AH. Biết rằng AC Son AB=ACH a) Tính cạnh AH HB HC và BC b) Gọi p là hình chiếu của H xuống 48. Chứng minh rằng AP AR MW HAN Bài 6 Cho tam giác tê vuông tại 4 có đường cao 01 chia cạnh huyện 00 thành hai đoạn hồi 6cm và Htman. a) Tính độ dài các đoạn AH AB, AC, b) Gọi K là trung điểm của C. Ke M8 L BM(K = BM) Chứng minh: BK BM = BH BK Bài 7.Cho tam giác ABC vuông tại 4, đường cao AH. Biết AB = 12cm: BC = 200m. a) Tính độ dài AC BH và III. b) Ching minh HB.HC AC-HC Bài 8 Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm, BC = 15cm. a) Tính độ dài AC và AH. bị Ke tia phân giác. 4 của BIC (M = BC). Tính diện tích tam giác ABM (làm tròn đến chữ thập phân thứ nhất)

1

Bài 7: Sửa đề; AB=12cm; BC=20cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot20=12^2=144\)

=>BH=144/20=7,2(cm)

b: ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)

Bài 8:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=15^2-9^2=144\)

=>\(AC=\sqrt{144}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>BH=81/15=5,4(cm)

 b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM

Xét ΔABC có AM là phân giác

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)

=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)

=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)

=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)

=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)

=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)

=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)

=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)