X^11- X^8+x^7-X^6+Z-1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a, => 21-x+3 < 0
=> 24-x < 0
=> x < 24
b, => 7+x > 0
=> x > -7
c, => x-1 < 0 ; x+2 > 0 ( vì x-1 < x+2 )
=> x < 1 ; x > -2
=> -2 < x < 1
Tk mk nha
Bài làm
m) (x + 2).(3 - x) = 0;
=> x + 2 = 0 hoặc 3 - x = 0
=> x = -2 hoặc x = 3
Vậy x = -2 hoặc x = 3
d) 511.712 + 511.711
= 511 . ( 712 + 711 )
= 511 . [ 711 . ( 7 + 1 ) ]
= 511 . 711 . 8
= ( 5 . 7 )11 . 8
= 3511 . 8
512.712 + 9.511.711
= 511 ( 5 . 712 + 9 . 1 . 711 )
= 511 [ 711 ( 5 . 7 + 9 . 1 . 1 ) ]
= 511 ( 711 . 44 )
= 511 . 711 . 44
= 3511 . 44
m. \(\left(x+2\right)\left(3-x\right)=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\3-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d. \(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.\left(7^{12}+7^{11}\right)}{5^{11}.\left(5.7^{12}+9.7^{11}\right)}=\frac{7^{12}+7^{11}}{5.7^{12}+9.7^{11}}=\frac{1}{5.9}=\frac{1}{45}\)
q. \(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+...+10+11=11\)
\(\Rightarrow\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+...+10=0\)
\(\Rightarrow\left[\left(x-3\right)+\left(x-2\right)+\left(x-1\right)\right]+(1+2+3+...+10)=0\)
\(\Rightarrow\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+55=0\)
\(\Rightarrow x-3+x-2+x-1=-55\)
\(\Rightarrow3x-6=-55\)
\(\Rightarrow3x=-49\)
\(\Rightarrow x=-\frac{49}{3}\)
a) \(a^5.a^7:a^{11}\left(a\inℤ\right)\)
\(\Rightarrow a^5.a^7:a^{11}=a^{5+7}:a^{11}=a^{12}:a^{11}=a^1=a\)
b) \(x^6:x^3.x^2\)
\(\Rightarrow x^{6-3}.x^2=x^3.x^2=x^5\)
c) \(\left[\left(x^8\right)^3\right]^0\left(x\ne0\right)\)
\(\Rightarrow\left[\left(x^8\right)^3\right]^0=\left(x^{24}\right)^0=1\)
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
1) ( x - 2 ) . ( x + 15 ) = 0
\(\Rightarrow\) x - 2 = 0 hoặc x + 15 = 0
* Nếu x - 2 = 0
x = 0 + 2
x = 2
* Nếu x + 15 = 0
x = 0 - 15
x = -15
Vậy x \(\in\) { 2 ; -15 }
2) ( 7 - x ) . ( x + 19 ) = 0
\(\Rightarrow\) 7 - x = 0 hoặc x + 19 = 0
* Nếu 7 - x = 0
x = 7 - 0
x = 7
* Nếu x + 19 = 0
x = 0 - 19
x = -19
Vậy x \(\in\) {7 ; -19}
9/11 x 8 = 72/11
5/6 x 7 = 35/6
4/5 x 1 = 4/5
5/8 x 0 = 0
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)