K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)

3 tháng 7 2019

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)

14 tháng 7 2018

Giusp minh voi a

14 tháng 7 2018

bạn vào wolfram alpha mà tính

2 tháng 10 2019

undefinedundefined

2 tháng 10 2019

cảm ơn

9 tháng 8 2019

1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

=\(\frac{\left(\sqrt{15}-\sqrt{5}\right)\cdot\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)}+\frac{\left(5-2\sqrt{5}\right)\cdot\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\cdot\left(2\sqrt{5}+4\right)}\)

=\(\frac{2\sqrt{5}}{2}+\frac{2\sqrt{5}}{4}\)

=\(\sqrt{5}+\frac{\sqrt{5}}{2}\)

=\(\frac{3\sqrt{5}}{2}\)

2/\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)

=\(\frac{\left(\sqrt{15}-\sqrt{12}\right)\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\cdot\left(\sqrt{5}+2\right)}+\frac{\left(6+2\sqrt{6}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+2\right)\cdot\left(\sqrt{3}-2\right)}\)

=\(\frac{\sqrt{3}}{1}+\frac{2\sqrt{3}}{1}\)

=\(3\sqrt{3}\)

3/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)

=\(\frac{\sqrt{3}\cdot\left(3+2\sqrt{3}\right)}{3}+\frac{\left(2+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\cdot\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)

=\(\frac{6+3\sqrt{3}}{3}+\sqrt{2}-\left(2-\sqrt{3}\right)\)

=\(\frac{3\cdot\left(2+\sqrt{3}\right)}{3}+\sqrt{2}-\left(2+\sqrt{3}\right)\)

=\(2+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)

=\(\sqrt{2}\)

Câu số 4 bạn có chắc là đúng đề bài không ạ ? Xem lại đề giúp mình nhé, cảm ơn bạn ^^