K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Ta có: \(x^2y^2+x^2+y^2+4xy=73\)

<=>  \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)

<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)

Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)

Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}

=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)

thay y vào pt (1) ... (tự làm)

Hoặc C2:

\(x^2y^2+x^2+y^2+4xy=73\)

<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)

<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)

Xét các TH xảy ra: 

+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)

(Tự tính)

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))

17 tháng 7 2017

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

24 tháng 1 2020

ngu như chó

mày lại thích đi gây sự nữa à Vũ Lan Anh

20 tháng 1 2019

\(x^2+y^2=2x^2y^2\)

\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

\(\Rightarrow x^2\ge y^2\)

Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)

Với x=1 thì thỏa mãn

Với x>1 thì dễ thấy KTM

Vậy....

15 tháng 8 2023

\(\Leftrightarrow x^2+2xy+y^2-xy-x^2y^2=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

VT là 1 số chính phương mà vế phải là tích 2 số tự nhiên liên tiếp

\(\Rightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\)

+ Với \(xy=0\Rightarrow\left(x+y\right)^2=x^2+y^2=0\Rightarrow x=y=0\)

+ Với \(xy+1=0\Rightarrow xy=-1\Rightarrow\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

5 tháng 12 2018

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)

Vì x,y là số nguyên nên ta có các trường hợp: 

TH1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

TH3: \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)

TH4: \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{\left(6;2\right),\left(0;0\right),\left(4;2\right),\left(2;0\right)\right\}\)

\(\)

7 tháng 11 2019

x2−4xy+5y2=17x2−4xy+5y2=2

⇔(x−2y)2+y2=17⇔(x−2y)2+y2=2

= 2 + 1

= 1 + 2

Ta có bảng sau:

x-2y11-1-144-4-4
y4-44-41-11-1
x9-77-962-2-6
y4-44-41-11-1

Vậy (x;y)={(9;4);(−7;−4);(7;4);(−9;−4);(6;1);(2;−1);(−2;1);(−6;−1)}