CMR a^n+4-a^n chia hết cho 30, với n là số nguyên dương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
BT
1
9 tháng 5 2017
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= ( 3n + 2 + 3n ) - ( 2n + 4 - 2n )
= ( 3n . 32 + 3n . 1 ) - ( 2n . 24 - 2n . 1 )
= 3n ( 32 + 1 ) - [ 2n ( 24 - 1 ) ]
= 3n . 10 - 2n . 15
= 3n - 1 . 3 . 10 - 2n - 1 . 2 .15
= 3n - 1 . 30 - 2n - 1 . 30
Vì 30 chia hết cho 30
Nên 3n - 1 . 30 chia hết cho 30
Và 2n - 1 . 30 chia hết cho 30
Suy ra 3n - 1 . 30 - 2n - 1 . 30 chia hết cho 30
Hay 3n + 2 - 2n + 4 + 3n + 2n chia hết cho 30 ( đpcm )
NG
0
\(a^{n+4}-a^n=a^n\left(a^4-1\right)=a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)
Vì \(a;a+1;a-1\) là 3 số nguyên liên tiếp => \(a.\left(a-1\right)\left(a+1\right)⋮3\)
Vì \(a;a+1\)là 2 số nguyên liên tiếp => \(a\left(a+1\right)⋮2\)
Lại có ( 3; 2) = 1; 3.2 => \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮6\)
Vì \(a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)⋮5\)
Mà ( 6; 5) = 1 và 6.5 = 30
=> \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮30\)
=> đpcm