choa,b >0 thỏa mãn a+b>4.Tìm GTNN của biểu thức P=4/a+4/b+3a+3b-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
\(4^{a+b-1}-\left(\frac{1}{2}\right)^{3a+b-2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}-2^{-3a-b+2}+5a+3b-4=0\)
\(\Leftrightarrow2^{2a+2b-2}+2b+2b-2=2^{-3a-b+2}-3a-b+2\)(1)
Xét hàm \(f\left(t\right)=2^t+t\)
\(f'\left(t\right)=2^t.ln\left(2\right)+1>0,\forall t\inℝ\)
suy ra \(f\left(t\right)\)đồng biến trên \(ℝ\).
(1) suy ra \(2a+2b-2=-3a-b+2\Leftrightarrow b=\frac{4-5a}{3}\)
\(P=a^2+2ab+b^2=\left(a+b\right)^2=\left(a+\frac{4-5a}{3}\right)^2\ge0\)
Dấu \(=\)khi \(a=2\).
Vậy \(minP=0\)khi \(a=2,b=-2\)
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
Các bạn giúp mk nhanh vs aaaaaasắp đến hạn nộp rồi
Bài làm:
Ta có: \(P=\frac{4}{a}+\frac{4}{b}+3a+3b-2\)
\(P=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+2\left(a+b\right)-2\)
Áp dụng bất đẳng thức Cauchy ta được:
\(P\ge2\sqrt{\frac{4}{a}.a}+2\sqrt{\frac{4}{b}.b}+2.4-2\)
\(=4+4+8-2=14\)
Dấu "=" xảy ra khi: \(a=b=2\)
Vậy Min(P) = 14 khi a=b=2