K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a lẻ nên a=2k+1

(a-1)(a+1)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\)

\(=4k\left(k+1\right)\)

Vì k;k+1 là hai số tự nhiên liên tiếp

nên \(k\left(k+1\right)⋮2\)

=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)

=>\(\left(a-1\right)\left(a+1\right)⋮8\)

Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2

TH1: a=3c+1

\(\left(a-1\right)\left(a+1\right)\)

\(=\left(3c+1-1\right)\left(3c+1+1\right)\)

\(=3c\left(3c+2\right)⋮3\left(1\right)\)

TH2: a=3c+2

\(\left(a-1\right)\left(a+1\right)\)

\(=\left(3c+2-1\right)\left(3c+2+1\right)\)

\(=\left(3c+3\right)\left(3c+1\right)\)

\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)

Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)

mà \(\left(a-1\right)\left(a+1\right)⋮8\)

và ƯCLN(3;8)=1

nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)

13 tháng 3 2022

qqqqqqqqqqqqqq

5 tháng 8 2018

VD: 3 số tự nhiên liên tiếp là:1;2;3

1x2x3=6 ( chia hết cho 6 )

VD:11 và 17

11+17=28 ( chia hết cho 2)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6