K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Giả sử phản chứng n ko chia hết cho 5 

=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4

TH1:   n = 5a + 1

=>   \(n^2=\left(5a+1\right)^2=25a^2+10a+1\)     ko chia hết cho 5

TH2:   n = 5b + 2

=>    \(n^2=\left(5b+2\right)^2=25b^2+20b+4\)    ko chia hết cho 5

TH3:   n = 5c + 3

=>   \(n^2=\left(5c+3\right)^2=25c^2+30c+9\)     ko chia hết cho 5

TH4:   n = 5d + 4

=>   \(n^2=\left(5d+4\right)^2=25d^2+40d+16\)  ko chia hết cho 5

VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI

=>    ĐIỀU PHẢI CHỨNG MINH:     \(n^2⋮5\Rightarrow n⋮5\)

23 tháng 8 2020

Giả sử n2 chia hết cho 5 và n không chia hết cho 5.

Nếu n=5k\(\pm\)\(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)

Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)

Điều này mâu thuẫn với giả thiết n2 chia hết cho 5

29 tháng 10 2023

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

29 tháng 10 2023

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

25 tháng 9 2016

minh chi moi lop 7 nen chua biet nheiu, nhung minh se lam theo cach cua minh.

Neu sai thi co the it nhat se cho ban dc mot vai goi y de lam bai 9 ( trong truong hop ban ko bik

dat  n=abc...

neu n^2 chia het cho 3->n^2 co so nguyen to 3=>n co so nguyrn to 3 -> n co so nguyen to 3      (1)

neu n khong chia het cho 3 =>n ko co so nguyen to 3->n^2 ko co so nguyen to 3->n^2 ko chia het cho 3(2)

Vay n^2 chia het cho 3 thi n chia het cho 3

minh thay van sai sot rat nhieu va qua nhieu chu, day co the lam goi y thoi

4 tháng 12 2017

mk mới hk lớp 6 ko biết giải có đúng ko

Giả sử n không chia hết cho 3 => n có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

+) Với n=3k+1 

=> n^2=(3k+1)^2=9.k^2+6k+1 không chia hết cho 3

+) Với n=3k+2

=> n^2=(3k+2)^2=9.k^2+12k+4 không chia hết cho 3

Vậy với n không chia hết cho 3 thì n^2 không chia hết cho 3

=> Với n^2 chia hết cho 3 thì n phải chia hết cho 3

26 tháng 7 2018

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.