K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefined

Do góc DAM = góc AMB=600, mà 2 góc này slt nên AD//BC=> ABCD là hình thang

Mà góc ABC= góc DCB=600 nên ABCD là hình thang cân.

Còn O là điểm gì thì mik ko bt

Do AM=AB, AD//BC nên ABCM là hình thoi.

Ma AC và BM là 2 đường chéo nên OAM=OAB=600/2=300.

Tương tự ta cx có OBM=OBC=600/2=300.

=> ABO=600+300=900

Do Tam giác ABO có B=900 và A=300 nên đây là tam giác nửa đều.

=>AO=2OB. (1)

Mà O là giao điểm 2 đg chéo hình thg cân nên OA=OD. (2)

Từ (1),(2), ta có OD=2OB.

(DO MÌNH TỰ GIẢI NÊN CÓ GÌ SAI BN SỬA LẠI NHA!)undefined

1 tháng 8 2020

A B C D E O

                                                           Bài giải

a) + Vì \(\Delta ABC\)và \(\Delta ACD\)đều

       \(\Rightarrow\)\(\widehat{BAC}=\widehat{ACD}\left(=60^0\right)\)

        mà chúng ở vị trí so le trong 

       \(\Rightarrow\)\(AD//BC\)(1)

   + Chứng minh tương tự: \(AD//CE\)(2)

   + Từ (1) và (2) \(\Rightarrow\)\(AD//BE\)

       \(\Rightarrow\)Tứ giác \(ADEB\)là hình thang

   + Vì \(\Delta ABC\)và \(\Delta DCE\)đều

       \(\Rightarrow\)\(\widehat{ABC}=\widehat{DEC}\left(=60^0\right)\)

       \(\Rightarrow\)Hình thang \(ADEB\)là hình thang cân ( ĐPCM )

b) + Vì \(\Delta ABC\)đều \(\Rightarrow\)\(AB=BC=AC\)(3)

         \(\Delta ACD\)đều \(\Rightarrow\)\(DA=AC=CD\)(4)

         \(\Delta DCE\)đều \(\Rightarrow\)\(DC=CE=ED\)(5)

   + Từ (3),(4) và (5) \(\Rightarrow\)\(AB=BC=AC=DA=DC=CE=ED\)

         \(\Rightarrow\)\(AD=\frac{1}{2}BE\)\(\Rightarrow\)\(\frac{AD}{BE}=\frac{1}{2}\)

   + Vì ​\(AD//BE\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{AD}{BE}\)( định lí Ta-lét )​

       mà \(\frac{AD}{BE}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{1}{2}\)

 Vậy O chia mỗi đường chéo thành 2 phần theo tỉ lệ 1:2

 ^_^ chúc bn hok tốt nha ^_^

31 tháng 7 2016

BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!

a. BM // AC \(\Rightarrow\)  \(\frac{AD}{DB}=\frac{AC}{MB}\)

\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)

\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)

\(CN\)  // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)

\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)

TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)

vì \(\widehat{BAC}=60^0\) 

nên \(\Delta AED\)  là tam giác đều

31 tháng 7 2016

b. theo hướng chứng minh trên :

\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)

\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)

\(AD=6\Rightarrow DE=6\)