K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

Đề có nhầm không bạn ??

19 tháng 8 2020

ình gửi l;ại câu hỏi bạn giải hộ mình nhé

25 tháng 5 2019

Hỏi đáp Toán

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

6 tháng 9 2017

ko hiện đc công thức

6 tháng 9 2017

Chắc là mình ghi sai

11 tháng 7 2017

\(=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right):\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Lời giải:

ĐK: \(x,y\geq 0; x\neq y\). Để cho gọn đặt \(\sqrt{x}=a; \sqrt{y}=b\). Khi đó:

\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right).\frac{(\sqrt{x}-\sqrt{y})^2}{x\sqrt{x}+y\sqrt{y}}\)

\(=(\frac{a^2-b^2}{a-b}-\frac{a^3-b^3}{a^2-b^2}).\frac{(a-b)^2}{a^3+b^3}\)

\(=\frac{(a^2-b^2)(a+b)-(a^3-b^3)}{a^2-b^2}.\frac{(a-b)^2}{a^3+b^3}\)

\(=\frac{ab(a-b)}{(a-b)(a+b)}.\frac{(a-b)^2}{a^3+b^3}=\frac{ab(a-b)^2}{(a+b)(a^3+b^3)}\)

\(=\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}+\sqrt{y})(x\sqrt{x}+y\sqrt{y})}\)

17 tháng 7 2016

D = \(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)}\) . \(\frac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)  = \(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

1 tháng 11 2020

\(=\frac{x-2\sqrt{x}+y+2\sqrt{y}-2\sqrt{xy}+1}{x-2\sqrt{xy}+y-1}\)\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2-2\left(\sqrt{x}-\sqrt{y}\right)+1}{\left(\sqrt{x}-\sqrt{y}\right)^2-1}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}-1\right)^2}{\left(\sqrt{x}-\sqrt{y}+1\right)\left(\sqrt{x}-\sqrt{y}-1\right)}=\frac{\sqrt{x}-\sqrt{y}-1}{\sqrt{x}-\sqrt{y}+1}\)