chứng minh rằng với mọi số thực a, b ta có |a ± b| ≥ |a| - |b|. Giúp mik vs mik tick đúng cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b phải tối giản và phân số giữa tử và mẫu cách nhau 2 đơn vị
Bạn thử làm vậy xem
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\\ \Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\\ \Leftrightarrow12a=10b\\ \Leftrightarrow6a=5b\Leftrightarrow\dfrac{a}{b}=\dfrac{5}{6}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Vì a : 5 dư 2
-> a= 5k + 2
Vì b :5 dư 3
-> b= 5h+3
Xét: ab= (5k+2)(5h+3)=25kh+15k+10h+6=5(5kh+3k+2h+1)+1
Vi 5(5kh+3k+2h)chia hết cho 5
->5(5kh+3k+2h)+1:5 dư 1
->ab:5 dư1
Ta có : a = 5 x p + 2 ( \(_{p\in n}\) )
Tương tự : b = 5 x q + 3 (\(q\in n\) )
Theo đề bài : a x b = ( 5 x p + 2 ) . ( 5 x q + 3 )
Hay : a x b = 25 x p x q x 10 x q + 15 x p + 6 = 5 x ( 5 x q x p x 2 x q x 3 x p ) + 6
Vì 5 x ( 5 x q x p x 2 x q x 3 x p ) \(⋮\) 5 , còn 6 chia hết cho 5 dư 1
=> a x b chia hết cho 5 dư 1
Hok tốt !