d.A=1/2B B=2C C=2D
tinh cac goc trong tu giac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{4+3+2+1}=\frac{360}{10}=36\)
\(\Rightarrow\widehat{A}=144^0;\widehat{B}=108^0;\widehat{C}=72^0;\widehat{D}=36^0\)
Hình bạn tự vẽ nha
Xét hình tứ giác ABCD có:
góc A+góc B+góc C+góc D =360 độ
Vì góc A-góc C=60 độ
=>góc C=góc A-60 độ
=>góc A+góc B+(góc A-60 độ)+góc D=360 độ
=>2.góc A+góc B+góc D=360 độ+60 độ
=>2.góc A+góc B+góc D=420 độ
Vì BI là phân giác của góc B
=>góc ABI=góc B/2
=>2.góc ABI=góc B
Vì DI là phân giác của góc D
=>góc ADI=góc D/2
=>2.góc ADI=góc D
Vì 2.góc A+góc B+góc D=420 độ
=>2.góc A+2.góc ABI+2.góc ADI=420 độ
=>2.(góc A+góc ABI+góc ADI)=420 độ
=>góc A+góc ABI+góc ADI=210 độ
Xét tứ giác ABID có:
góc A+góc ABI+góc ADI+góc BID=360 độ
mà góc A+góc ABI+góc ADI=210 độ
=>210 độ +góc BID=360 độ
=>góc BID=150 độ
Vậy góc BID =150 độ
Xét tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(132^0+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
Ta có : \(\widehat{B}=\widehat{C}-72^0\)
=> \(\widehat{C}-72^0+\widehat{C}+\widehat{D}=228^0\)
=> \(2\widehat{C}-72^0+\widehat{D}=228^0\)
Mà \(\widehat{D}=2\widehat{C}\)
=> \(2\widehat{C}-72^0+2\widehat{C}=228^0\)
=> \(4\widehat{C}=300^0\)
=> \(\widehat{C}=75^0\)(*)
Thay (*) vào \(\widehat{D}=2\widehat{C}=2\cdot75^0=150^0\)
Lại có : \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
=> \(\widehat{B}+75^0+150^0=228^0\)
=> \(\widehat{B}=3^0\)
P/S : Góc B nhỏ thế ?
Ban tham khao ------ https://olm.vn/hoi-dap/detail/223399948894.html
#Py
Hình bạn tự vẽ nhé !
* Ta có : AB2 = AC2 + BC2
AB2 = 0,9 + 1,2 = 2,1
==> AB ~ 1,5 (m)
sinB = AC/AB = 0,9/1,5 = 0,6
CosB= BC/AB = 1,2/1,5=0,8
tanB= AC/BC = 0,9/1,2=0,75
cotB= BC/AC=1,2/0,9=1,3
A B C 0,9 1,2
Ta có AC vg AB
\(BC^2\) = \(AC^2\)+ \(AB^2\)
Hay \(BC^2\) = \(0,9^2\)+ \(1,2^2\)
\(BC^2\)= \(2,25\)
=> \(BC\) = \(\sqrt{2,25}\) = \(1,5\)cm
\(\sin\widehat{B}\)= \(\frac{AC}{AB}\)=\(\frac{0,9}{1,5}\)= \(0,6\)
\(\cos\widehat{B}\)= \(\frac{BC}{AB}\)=\(\frac{1,2}{1,5}\)= \(0,8\)
\(\tan\widehat{B}\)= \(\frac{AC}{BC}\)= \(\frac{0,9}{1,2}\)= \(0,75\)
\(\cot\widehat{B}\)= \(\frac{BC}{AC}\)= \(\frac{1,2}{0,9}\)= \(\frac{4}{3}\)
\(\sin\widehat{C}\)= \(\cos\widehat{B}\)= \(0,8\)
\(\cos\widehat{C}\)= \(\sin\widehat{B}\)= \(0,6\)
\(\tan\widehat{C}\)= \(\cot\widehat{B}\)= \(\frac{4}{3}\)
\(\cot\widehat{C}\)= \(\tan\widehat{B}\)= \(0,75\)