x-1/3=y-3=z-3/5 và 3x+2y-z=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)
b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4
c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3
d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)
e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).
#rin
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$
Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath
Ta có \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}\)
=> \(\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}=\) \(=\frac{3x-3+2y-6-z+3}{9+2-5}=\frac{\left(3y+2y-z\right)-6}{6}=\frac{-6}{6}=-1\)
=> \(\hept{\begin{cases}x-1=-3\\y-3=-1\\z-3=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=2\\z=-2\end{cases}}\)
Ta có :
\(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}\)
\(\Rightarrow\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{9}=\frac{2y-6}{2}=\frac{z-3}{5}\)
\(=\frac{3x-3+2y-6-z+3}{9+2-5}=\frac{\left(3y+2y-z\right)-6}{6}=\frac{-6}{6}=-1\)
\(\Rightarrow\hept{\begin{cases}x-1=-3\\y-3=-1\\z-3=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=2\\z=-2\end{cases}}}\)