Chứng minh phản chứng nếu mn chia hết cho 3 thì m hoặc n chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
m chia hết cho 9 hay m=3k =>m2=9k2 chia hết cho 9
n chia hết cho 9 hay n=3h =>n2=9h2 chia hết cho 9
mn=9kh chia hết cho 9
Vậy m2+mn+n2chia hết cho 9
Dễ mà bạn giả sử m,n đều ko chia hết cho 3 thì mn ko chia hết cho 3 vô lí suy ra Ngược lại thoy