-4/1/3.( 1/2-1/6 ) < n < -2/3.( 1/3-1/2-3/4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)
\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)
\(\Rightarrow M=1-\frac{1}{2016^2}\)<1
=>(DPCM)
CÂU b và c làm tương tự
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
\(-4:\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)< n< \frac{-2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Rightarrow-4\cdot3\left(\frac{3}{6}-\frac{1}{6}\right)< n< -\frac{2}{3}\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)
\(\Rightarrow-4\cdot3\cdot\frac{1}{3}< n< -\frac{2}{3}\cdot\left(-\frac{11}{12}\right)\)
\(\Rightarrow-4< n< -\frac{1}{3}\cdot\left(-\frac{11}{6}\right)=\frac{11}{18}\)
=> \(-4< n< \frac{11}{18}\)
=> \(-\frac{72}{18}< n< \frac{11}{18}\)
Đến đây bạn tự xét đi nhé