Bài 3: Tìm các giá trị của x, biết a) \(\frac{2}{7}x-1\frac{2}{5}=\frac{3}{5}\) b) \(\left|x+\frac{5}{2}\right|=\frac{19}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
B1
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)
\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)
\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)
\(x-\frac{11}{6}=1:\frac{3}{50}\)
\(x-\frac{11}{6}=\frac{50}{3}\)
\(x=\frac{50}{3}+\frac{11}{6}\)
\(x=\frac{37}{2}\)
b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)
\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)
\(\frac{5}{7}:x=-\frac{4}{15}\)
\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)
\(x=-\frac{75}{28}\)
c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)
\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)
\(\frac{2}{5}.x=-1\)
\(x=-1:\frac{2}{5}\)
\(x=-\frac{5}{2}\)
B2
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)
\(=\frac{7}{6}.24:5-\frac{33}{10}\)
\(=28:5-\frac{33}{10}\)
\(=\frac{28}{5}-\frac{33}{10}\)
\(=\frac{56}{10}-\frac{33}{10}\)
\(=\frac{23}{10}\)
b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)
\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)
\(=\frac{61}{70}+0:\frac{25}{144}\)
\(=\frac{61}{70}+0\)
\(=\frac{61}{70}\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
Bài 4:
Giải:
Vì Om là tia phân giác của góc xOz nên:
mOz = 1/2.xOz
Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy
Ta có: xOz + zOy = 180o ( kề bù )
=> 1/2(xOz + zOy) = 1/2 . 180o
=> 1/2.xOz + 1/2.zOy = 90o
=> mOz + zOn = 90o
=> mOn = 90o (đpcm)
Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55
Vậy 7^6 + 7^5 - 7^4 chia hết cho 55
A = 1 + 5 + 5^2 + ... + 5^50
=> 5A = 5 + 5^2 + 5^3 + ... + 5^51
=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )
=> 4A = 5^51 - 1
=> A = ( 5^51 - 1 )/4
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
a) \(\frac{2}{7}x-1\frac{2}{5}=\frac{3}{5}\)
=> \(\frac{2}{7}x-\frac{7}{5}=\frac{3}{5}\)
=> \(\frac{2}{7}x=2\)
=> x = 7
b) \(\left|x+\frac{5}{2}\right|=\frac{19}{4}\)
=> \(\orbr{\begin{cases}x+\frac{5}{2}=\frac{19}{4}\\x+\frac{5}{2}=-\frac{19}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{-29}{4}\end{cases}}\)
A=2/7x-7/5=3/5 B=
2/7x =3/5+7/5
2/7x =2
x =7