Cho các số thực x,y với \(x\ge0\) thỏa mãn \(5^{x+3y}+5^{xy+1}+x\left(y+1\right)+1=5^{-xy-1}+\frac{1}{5^{x+3y}}-3y\) . Gọi m là giá trị nhỏ nhất của biểu thức T=x =2y +1. Tìm m?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24
mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(5^{x+3y}+5^{xy+1}+xy+1+x+3y=\frac{1}{5^{xy+1}}+\frac{1}{5^{x+3y}}\)
\(\Leftrightarrow5^{x+3y}-5^{-x-3y}+x+3y=5^{-xy-1}-5^{-\left(-xy-1\right)}+\left(-xy-1\right)\)
Xét hàm \(f\left(t\right)=5^t-\frac{1}{5^t}+t\Rightarrow f'\left(t\right)=5^t.ln5+\frac{ln5}{5^t}+1>0\)
\(\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow x+3y=-xy-1\)
\(\Rightarrow y\left(x+3\right)=-x-1\)
\(\Rightarrow y=\frac{-x-1}{x+3}\)
\(\Rightarrow T=f\left(x\right)=x-\frac{2x+2}{x+3}+1\)
\(f'\left(x\right)=\frac{\left(x+1\right)\left(x+5\right)}{\left(x+3\right)^2}>0;\forall x\ge0\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=\frac{1}{3}\Rightarrow m=\frac{1}{3}\)