cosx= -cos (x+\(\frac{\pi}{3}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)
Vậy phương trình \(cosx = - 3\;\) vô nghiệm.
\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x = - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x = - {15^o} + k{360^o},k \in \mathbb{Z}\).
\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} = - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x = - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x = - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).
\(\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{6}=-\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
Phuong Tran
\(\Leftrightarrow2cos\left(x+\frac{\pi}{6}\right).cos\left(\frac{\pi}{6}\right)=\frac{3}{2}-4sin\frac{x}{2}.sin\left(\frac{x}{2}+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\sqrt{3}cos\left(x+\frac{\pi}{6}\right)=\frac{3}{2}+2\left[cos\left(x+\frac{\pi}{6}\right)-cos\frac{\pi}{6}\right]\)
\(\Leftrightarrow\sqrt{3}cos\left(x+\frac{\pi}{6}\right)=\frac{3}{2}+2cos\left(x+\frac{\pi}{6}\right)-\sqrt{3}\)
\(\Leftrightarrow\left(\sqrt{3}-2\right)cos\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\left(\sqrt{3}-2\right)\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\)
\(\Leftrightarrow...\)
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
\(=2cosx+sinx-cosx-sinx\)
\(=cosx\)
a: cosx=3
mà -1<=cosx<=1
nên \(x\in\varnothing\)
b: \(cosx=\dfrac{\sqrt{3}}{2}\)
=>\(cosx=cos\left(\dfrac{pi}{6}\right)\)
=>x=pi/6+k2pi hoặc x=-pi/6+k2pi
c: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{pi}{12}=\dfrac{3}{12}pi+k2pi\\x+\dfrac{pi}{12}=-\dfrac{3}{12}pi+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{12}pi+k2pi=\dfrac{1}{6}pi+k2pi\\x=-\dfrac{4}{12}pi+k2pi=-\dfrac{1}{3}pi+k2pi\end{matrix}\right.\)
d: =>x-20 độ=70 độ+k*360 hoặc x-20=-70+k*360
=>x=90+k*360 hoặc x=-50+k*360
\(cosx+cos\left(x+\frac{\pi}{5}\right)+cos\left(x+\frac{9\pi}{5}\right)+cos\left(x+\frac{2\pi}{5}\right)+cos\left(x+\frac{8\pi}{5}\right)+...+cos\left(x+\frac{5\pi}{5}\right)\)
\(=cosx-2cosx.cos\frac{4\pi}{5}-2cosx.cos\frac{3\pi}{5}-2cosx.cos\frac{2\pi}{5}-2cosx.cos\frac{\pi}{5}-cosx\)
\(=-2cosx\left(cos\frac{\pi}{5}+cos\frac{4\pi}{5}+cos\frac{2\pi}{5}+cos\frac{3\pi}{5}\right)\)
\(=-2cosx\left(2cos\frac{\pi}{2}.cos\frac{3\pi}{10}+2cos\frac{\pi}{2}cos\frac{\pi}{10}\right)\)
\(=0\) (do \(cos\frac{\pi}{2}=0\))
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(y=2cos\left(x+\frac{\pi}{6}\right)cos\left(\frac{\pi}{6}\right)=\sqrt{3}cos\left(x+\frac{\pi}{6}\right)\)
Do \(-1\le cos\left(x+\frac{\pi}{6}\right)\le1\) nên \(-\sqrt{3}\le y\le\sqrt{3}\)
\(y_{min}=-\sqrt{3}\) khi \(cos\left(x+\frac{\pi}{6}\right)=-1\)
\(y_{max}=\sqrt{3}\) khi \(cos\left(x+\frac{\pi}{6}\right)=1\)
a) Vẽ đồ thị:
\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm
b) Vẽ đồ thị:
\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm
3.
a.
\(\Leftrightarrow\left(cos3x-cosx\right)+\left(cos2x-1\right)=0\)
\(\Leftrightarrow-2sin2x.sinx+1-2sin^2x-1=0\)
\(\Leftrightarrow sin2x.sinx+sin^2x=0\)
\(\Leftrightarrow2sin^2x.cosx+sin^2x=0\)
\(\Leftrightarrow sin^2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow cosx=cos\left(\pi-x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow cosx=cos\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow x=\frac{2\pi}{3}-x+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)