Chứng minh đằng thức
(a-b)2=(a+b)2-4ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VP=\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2=VT\)(đpcm)
1) biến đổi vế trái:
= a2+2ab+b2 -a2 +2ab -b2
=4ab = vế phải ( đpcm)
3;5 tuong tu
1) (a + b)2 - (a - b)2 = a2 + 2ab + b2 - a2 + 2ab - b2 = 4ab
3) (a + b)2 - 4ab = a2 + 2ab + b2 - 4ab = a2 - 2ab + b2 = (a - b)2
5) a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\forall a\)
\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
Ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
\(\left(đpcm\right)\)
Chứng minh phản chứng :
Giả sử : \(\left(a+b\right)^2< 4ab\)
\(\Rightarrow a^2+2ab+b^2< 4ab\)
\(\Rightarrow a^2-2ab+b^2< 0\)
\(\Rightarrow\left(a-b\right)^2< 0\) (vô lí )
Vậy cần có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)(2)
từ (1) và (2) => đpcm
\(\left(a-b\right)^2=a^2-2ab+b^2\)(3)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)(4)
từ (1) và (2) => đpcm
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
dễ mà bạn ?
khai triển biểu thức ra ta được :
\(a^2-2ab+b^2=a^2+b^2+2ab-4ab\)
\(\Leftrightarrow a^2-2ab+b^2-a^2-b^2+4ab-2ab=0\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(b^2-b^2\right)+\left(-2ab-2ab+4ab\right)=0\)
\(\Leftrightarrow0+0+\left(4ab-4ab\right)=0\)
\(\Leftrightarrow0+0+0=0< =>0=0\)*đúng*
thật ra mình mới hc lớp 7 hỏi thử lm bài lớp 8 nhưng k hiểu nên lên đây hỏi.:>