K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

dễ mà bạn ?

khai triển biểu thức ra ta được :

 \(a^2-2ab+b^2=a^2+b^2+2ab-4ab\)

\(\Leftrightarrow a^2-2ab+b^2-a^2-b^2+4ab-2ab=0\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(b^2-b^2\right)+\left(-2ab-2ab+4ab\right)=0\)

\(\Leftrightarrow0+0+\left(4ab-4ab\right)=0\)

\(\Leftrightarrow0+0+0=0< =>0=0\)*đúng*

14 tháng 8 2020

thật ra mình mới hc lớp 7 hỏi thử lm bài lớp 8 nhưng k hiểu nên lên đây hỏi.:>

Ta có: \(VP=\left(a+b\right)^2-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2\)

\(=\left(a-b\right)^2=VT\)(đpcm)

5 tháng 8 2016

1) biến đổi vế trái:

= a2+2ab+b2 -a2 +2ab -b2

=4ab = vế phải ( đpcm)

3;5 tuong tu

5 tháng 8 2016

1) (a + b)- (a - b)2 = a+ 2ab + b- a+ 2ab - b2 = 4ab

3) (a + b)2 - 4ab = a+ 2ab + b- 4ab = a2 - 2ab + b= (a - b)2

5) a3 + b= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

thank you very much

 

3 tháng 7 2021

a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)

b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)

c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)

3 tháng 7 2021

\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)

\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)

19 tháng 7 2018

Ta có : 

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng ) 

\(\left(đpcm\right)\)

19 tháng 7 2018

Chứng minh phản chứng :

Giả sử : \(\left(a+b\right)^2< 4ab\)

\(\Rightarrow a^2+2ab+b^2< 4ab\)

\(\Rightarrow a^2-2ab+b^2< 0\)

\(\Rightarrow\left(a-b\right)^2< 0\) (vô lí )

Vậy cần có :

\(\left(a+b\right)^2\ge4ab\)

16 tháng 7 2017

\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)(2)

từ (1) và (2) => đpcm

  

\(\left(a-b\right)^2=a^2-2ab+b^2\)(3)

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2\)(4)

từ (1) và (2) => đpcm

1 tháng 8 2018

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

1 tháng 8 2018

\(\left(a+b\right)^2\ge4ab\)

<=>  \(a^2+2ab+b^2\ge4ab\)

<=>  \(a^2+2ab+b^2-4ab\ge0\)

<=>  \(a^2-2ab+b^2\ge0\)

<=>  \(\left(a-b\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra <=> a=b

19 tháng 7 2018

a) (a+b)2 + (a-b)= 2(a2 +b2)

VT = (a+ 2ab + b2) + (a2 - 2ab + b2) = a2 +2ab + b2 + a2 - 2ab + b2 = 2a2 + 2b2 = 2(a2 + b2) = VP (đpcm)

b) (a+b)2 = (a-b)2 + 4ab

VP = (a-b)2 + 4ab = a2 - 2ab + b2 + 4ab = a2 + 2ab +b2 = (a+b)2 = VT (đpcm)

13 tháng 8 2018

+ Chứng minh (a + b)2 = (a – b)2 + 4ab

Ta có:

VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab

      = a2 + (4ab – 2ab) + b2

      = a2 + 2ab + b2

      = (a + b)2 = VT (đpcm)

+ Chứng minh (a – b)2 = (a + b)2 – 4ab

Ta có:

VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab

      = a2 + (2ab – 4ab) + b2

      = a2 – 2ab + b2

      = (a – b)2 = VT (đpcm)

+ Áp dụng, tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.