K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

<=>   \(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)

<=>   \(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{12-6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}.\sqrt{12-6\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}.\sqrt{\left(3-\sqrt{3}\right)^2}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}\)

<=>   \(x^2=8-4\sqrt{2}\)

<=>   \(8-x^2=4\sqrt{2}\)

<=>   \(\left(8-x^2\right)^2=\left(4\sqrt{2}\right)^2\)

<=>   \(x^4-16x^2+64=32\)

<=>   \(x^4-16x^2=-32\)

VẬY    \(x^4-16x^2=-32\)

*** ĐÂY LÀ 1 BÀI TOÁN RẤT CỔ RỒI !!!!!!

26 tháng 6 2023

Giải

Ta có:

\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)

Khi đó:

\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)

Vậy \(S=-32\)

a) Ta có: \(a^3\)

\(=\left(\sqrt{5}+\sqrt{3}\right)^3\)

\(=5\sqrt{5}+15\sqrt{3}+9\sqrt{5}+3\sqrt{3}\)

b) Ta có: \(a^4-16a^2+4=0\)

\(\Leftrightarrow\left(\sqrt{5}+\sqrt{3}\right)^4-16\left(\sqrt{5}+\sqrt{3}\right)^2+4=0\)

\(\Leftrightarrow\left(8+2\sqrt{15}\right)^2-16\left(8+2\sqrt{15}\right)+4=0\)

\(\Leftrightarrow64+32\sqrt{15}+60-128-32\sqrt{15}+4=0\)

\(\Leftrightarrow0=0\)(đúng)

26 tháng 6 2021

\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)

\(=54+8-32=30\)

\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)

\(=5-2\sqrt{2}\)

\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)

\(=2-2\sqrt{3}\)

\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)

\(=2\sqrt{6}\)

\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)

26 tháng 6 2021

`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`

b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

20 tháng 8 2021

 

 

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằnga, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng a, -2x+6                 b,2x-6                     c -6                  d, 63, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúnga, f(2)<f(3)            b, f(-3)< f(-4) ...
Đọc tiếp

1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng

a, \(4+4\sqrt{3}\)            b, \(2+\sqrt{3}\)                c,4                   d, \(2\sqrt{3}\)

2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng 
a, -2x+6                 b,2x-6                     c -6                  d, 6

3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3)            b, f(-3)< f(-4)            c, f (-4)>f(2)      d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng 
a, \(R=\dfrac{a\sqrt{3}}{3}\)        b, R=a                  c, \(R=a\sqrt{3}\)      d, \(R=\dfrac{a\sqrt{3}}{2}\)

3
4 tháng 2 2022

1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

Đáp án C

2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)

Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6

Đáp án C

3. Vẽ đồ thị hàm f(x) ta có: 

Ta thấy f(2)<f(3), chọn Đáp án A

4. 

Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC

Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

Đáp án A

Câu 1: C

Câu 2: C

Câu 3: A

Câu 4: A

 

17 tháng 12 2020

a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)

b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)

\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)

c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)

d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)

\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)

e, Ghi đúng đề.

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)

\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)

\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)

\(=-\sqrt{5}\)

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3