K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 8 2020

Hình vẽ:

AH
Akai Haruma
Giáo viên
18 tháng 8 2020

Lời giải:

a) Ta thấy: $5^2+12^2=13^2$

$\Leftrightarrow KQ^2+KP^2=QP^2$

$\Rightarrow \triangle KQP$ vuông tại $K$ theo định lý Pitago đảo.

b)

$\sin P=\frac{QK}{QP}=\frac{5}{13}\Rightarrow \widehat{P}\approx 22,62^0$

$\widehat{Q}=90^0-\widehat{P}\approx 67,38^0$

$KH=\frac{2S_{KPQ}}{PQ}=\frac{KQ.KP}{PQ}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

Áp dụng định lý Pitago cho tam giác $HKP$ vuông: $PH=\sqrt{KP^2-KH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

c) Sửa lại: Gọi hình chiếu của O trên KP, KQ lần lượt là M, N. Chứng minh MN=KO.....

Thật vậy. Tứ giác $KNOM$ có 3 góc vuông $\widehat{N}=\widehat{K}=\widehat{M}=90^0$ nên $KNOM$ là hình chữ nhật

$\Rightarrow MN=KO$ (đpcm)

Áp dụng BĐT Cô si ta có:

$S_{KNOM}=KM.KN$

Do $ON\parallel KP, OM\parallel KQ$ nên theo định lý Ta-let ta có:

$\frac{KM}{QO}=\frac{KP}{QP}=\frac{12}{13}$

$\frac{KN}{PO}=\frac{KQ}{PQ}=\frac{5}{13}$

$\Rightarrow KM.KN=\frac{60}{13^2}.OQ.OP\leq \frac{60}{13^2}.\left(\frac{OQ+OP}{2}\right)^2$

(theo BĐT Cô-si)

Hay $KM.KN\leq \frac{60}{13^2}.\frac{PQ^2}{4}=\frac{60}{13^2}.\frac{13^2}{4}=15$

Vậy $S_{KNOM}$ max $=15$ khi $OQ=OP$ hay $O$ là trung điểm của $BC$

3 tháng 10 2018

ngu

rứi mà ko biết

tau bày cho nè

cc

cc

cc

31 tháng 7 2017

a, Ta có:  P K 2 + Q K 2 = 169 = P Q 2

=> ∆KQP vuông tại K

b, Ta có:  sin P Q K ^ = P K P Q = 12 13

=>  P Q K ^ ≈ 67 0 22 '

=>   K P Q ^ = 90 0 - 67 0 22 ' = 22 0 38 '

Theo hệ thức lượng trong tam giác vuông ta có: KH.PQ = KP.KQ => KH =  60 13 cm

P K 2 = P H . P Q =>  P H = P K 2 P Q = 144 13 cm

c, Tứ giác AKBO có  A K B ^ = K A O ^ = K B O ^ = 90 0 => AKBO là hình chữ nhật => AB = KO

=> AB = KO  KH =>  A B m i n = KH <=> AB = KO = KH <=> O ≡ H

a: Xét ΔKQP có \(QP^2=KQ^2+KP^2\)

nên ΔKQP vuông tại K

b: Xét ΔKQP vuông tại K có sin Q=KP/QP=12/13

nên góc Q=67 độ

=>góc P=23 độ

\(KH=\dfrac{12\cdot5}{13}=\dfrac{60}{13}\left(cm\right)\)

c: Xét tứ giác KAOB có góc KAO=góc KBO=góc BKA=90 độ

nên KAOB là hình chữ nhật

=>AB=KO

a: XétΔKQP vuông tại K có sin Q=KP/PQ=12/13

nên góc Q=68 độ

=>góc P=22 dộ

b: Xét tứ giác KAOB có góc KAO=góc KBO=góc AKB=90 độ

nên KAOB là hình chữnhật

Suy ra: KO=AB

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗