K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

b: \(=x^2-4x+4-y^2-6y-9\)

\(=\left(x-2\right)^2-\left(y+3\right)^2\)

\(=\left(x-2-y-3\right)\left(x-2+y+3\right)\)

\(=\left(x-y-5\right)\left(x+y+1\right)\)

27 tháng 10 2020

x2 + xy + 5x + 5y = ( x2 + xy ) + ( 5x + 5y ) = x( x + y ) + 5( x + y ) = ( x + y )( x + 5 )

x2 - y2 + 3x - 3y = ( x2 - y2 ) + ( 3x - 3y ) = ( x - y )( x + y ) + 3( x - y ) = ( x - y )( x + y + 3 )

27 tháng 10 2020

x² + xy + 5x + 5y 

= (x²+ xy) + ( 5x+5y)

= x(x+y) + 5(x+y)

= (x+y)(x+5)

x² - y² + 3x - 3y

= (x² - y²) + ( 3x -3y)

= (x-y)(x+y) + 3(x-y)

= (x-y)(x+y+3)

chúc bạn học tốt ^^

30 tháng 6 2023

Ta nhắc lại: Phương trình bậc hai phân tích được thành nhân tử khi và chỉ khi nó tồn tại nghiệm.

Ta thấy: `x^2-4x+12=(x-2)^2+8>=8>0AAx` nên ta không thể phân tích nhân tử cho phương trình này.

30 tháng 6 2023

x² - 4x - 12

= x² + 2x - 6x - 12

= (x² + 2x) - (6x + 12)

= x(x + 2) - 6(x + 2)

= (x + 2)(x - 6) 

HQ
Hà Quang Minh
Giáo viên
18 tháng 8 2023

\(a,x^2-y^2-4y-4\\ =x^2-\left(y^2+4y+4\right)\\ =x^2-\left(y+2\right)^2\\ =\left(x-y-2\right)\left(x+y+2\right)\\ b,x^2-y^2-6y-9\\ =x^2-\left(y^2+6y+9\right)\\ =x^2-\left(y+3\right)^2\\ =\left(x-y-3\right)\left(x+y+3\right)\\ c,4x^2-4y^2+12y-9\\ =\left(2x\right)^2-\left(2y-3\right)^2\\ =\left(2x-2y+3\right)\left(2x+2y-3\right)\)

NV
5 tháng 11 2021

Đa thức này ko phân tích thành nhân tử được

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

14 tháng 9 2015

(x^2 +7x)-(y^2+7y)

=x(x+7)-y(y+7)

=(x+7)(y+7)(x-y)

a: =x^2+5x-x-5

=(x+5)(x-1)

b: =4x^2-(y-3)^2

=(2x-y+3)(2x+y-3)

2 tháng 1 2023

bn ghi rõ cách lm ra dcj ko ạ

 

23 tháng 7 2017

\(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

4 tháng 10 2015

Pt vô nghiệm

=> dùng hệ số bất định hay phân tích có nhân tử là (x2+x+1)