K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

\8=====D

Giả sử:Đẳng thức trên là đúng

Ta có:\(a^3+b^3+c^3+d^3=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(c+d\right)\left(c^2-cd+d^2\right)\)

\(=\left(c+d\right)\left(c^2-cd+d^2-a^2+ab-b^2\right)=3\left(ab-cd\right)\left(c+d\right)\)

\(\Rightarrow c^2-cd+d^2-a^2+ab-b^2=3\left(ab-cd\right)\)

\(\Rightarrow c^2-cd+d^2-a^2+ab-b^2-3ab+3cd=0\)

\(\Rightarrow c^2+2cd+d^2-a^2-2ab-b^2=0\)

\(\Rightarrow\left(c+d\right)^2-\left(a+b\right)^2=0\)

\(\Rightarrow\left(a+b+c+d\right)\left(c+d-a-b\right)=0\)(Luôn đúng)

Vậy điều giả sử trên là đúng

Suy ra điều phải chứng minh

1 tháng 8 2017

số 2 là số mũ đo

bn tham khảo câu hỏi tươg tự nhé

5 tháng 8 2023

Ta có:

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))

\(=3\left(c+d\right)\left(ab-cd\right)\) 

Vậy đẳng thức được chứng minh.

17 tháng 9 2019

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3-d^3-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(-c-d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)

a+b+c+d=0

nên a+b=-(c+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=\left[-\left(c+d\right)\right]^3-3ab\cdot\left[-\left(c+d\right)\right]+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(=3\left(c+d\right)\left(ab-cd\right)\)

13 tháng 9 2017

a+b+c+d=0

=>a+b=-(c+d)

=>(a+b)^3=-(c+d)^3

=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)

=>a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)

=>a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) vi a+b=-(c+d)

=> a^3+b^3+c^3+d^3=3(c+d)(ab+cd)

Xem lai gium mk nha!!

26 tháng 9 2017

Ta có : a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd)