K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Ta có :\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

=> (2a + b)(c - 2d) = (a - 2b)(2c + d)

=> 2ac - 4ad + bc - 2bd = 2ac + ad - 4bc  - 2bd

=> -4ad + bc = ad - 4bc

=> -4ad - ad = -4bc - bc

=> -5ad = - 5bc

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)(đpcm)

10 tháng 8 2020

Theo bài ra ta có : 

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Leftrightarrow\left(2a+b\right)\left(c-2d\right)=\left(2c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow2ac-4ad+bc-2db=2ca-4bc+da-2bd\)

\(\Leftrightarrow-5ad+5bc=0\Leftrightarrow-5ab=-5bc\)

\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

20 tháng 9 2019

\(\frac{a}{a+2b}=\frac{c}{c+2d}\Rightarrow ac+2ad=ac+2bc\Rightarrow2ad=2bc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\frac{b}{2a-b}=\frac{d}{2c-d}\Rightarrow2cb-bd=2ad-bd\Rightarrow2ad=2cb\Rightarrow ad=cd\Rightarrow\frac{a}{b}=\frac{c}{d}\)

23 tháng 4 2020

Uầy đăng đề cũng thiếu, rồi ai làm cho baybe :)))?

NV
24 tháng 4 2020

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)

Tương tự ta có

\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)

Cộng vế với vế:

\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

24 tháng 4 2020

cảm ơn bạn nhé!

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)