a=bao nhiêu nếu a7 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi số cần tìm là \(n\)(\(n\in Z\)|\(n\le0\))
Theo đề bài ta có:
\(5n-6⋮n+3\)
\(5n+15-21⋮n+3\)
\(5\left(n+3\right)-21⋮n+3\)
\(\Rightarrow-21⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-21\right)\)
\(Ư\left(-21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
Ta có bảng sau:
n+3 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -24 | -10 | -6 | -4 | -2 | 0 | 4 | 18 |
Ta thấy n chỉ có 0;4;18 thỏa mãn điều kiện
Vậy các số cần tìm là 0;4;18
a : 7 (dư 5)
a : 13 (dư 4)
=> a + 9 chia hết cho 7 và 13.
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91.
=> a chia cho 91 dư 91-9 = 82.
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82.
C1:
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
C2:
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13 => A + 9 = k.7.13 = 91k
=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư -9 (hoặc 82)
C3:
Gọi a là số tự nhiên đó
Theo bài ra ta có
a = 7k + 5 và a = 13l + 4
Ta lại có a + 9 = 7k + 14 = 13l + 13
-> a + 9 chia hết cho 7 và 13
-> a + 9 chia hết cho 7.13 = 91
-> a + 9 = 91m -> a = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy a chia 91 dư 82