cho a/b<c/d,b>d>o, chứng minh:a/b,A-C/b-d<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\widehat{xOy}\) bẹt có Ot là tia phân giác
⇒ Ot ⊥ xy ⇒ \(\widehat{COA}=\widehat{DOB}=90^0\)
Ta có: △ AOC = ΔDOB ( c − g − c )
⇒ DB = AC ( 2 cạnh tương ứng )
Gọi E là giao điểm của AC và BD.
Có \(\widehat{EAB}+\widehat{EBA}=\widehat{OCA}+\widehat{OAC}=90^0\) vuông tại E
⇒ AC ⊥ BD
Ta có: b,d>0 =>b+d>0
a/b<c/d=>ad<bc
Thêm ab vào 2 vế, ta được: ab+ad<ab+bc
=>a(b+d)<(a+c)b
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế, ta được: ad+cd<cd+bc
=>(a+c)d<c(b+d)
=>a+c/b+d<c/d(2)
Từ 1,2 =>đpcm
b)
Để \(\frac{a}{b}>\frac{a+c}{b+d}\) thì \(a.\left(b+d\right)>b.\left(a+c\right)\)
\(\Rightarrow ab+ad>ab+bc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Để \(\frac{a+c}{b+d}>\frac{c}{d}\) thì \(\left(a+c\right).d>\left(b+d\right).c\)
\(\Rightarrow ad+cd>bc+dc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
1:
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
AB=CD
\(\widehat{OBA}=\widehat{ODC}\)(hai góc so le trong, AB//CD)
Do đó: ΔOAB=ΔOCD
=>OA=OC và OB=OD
=>O là trung điểm chung của AC và BD
b: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>\(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: ΔOAD=ΔOCB
=>AD=BC
2:
a: Xét ΔAHO vuông tại H và ΔCKO vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔAHO=ΔCKO
=>AH=CK và OH=OK
b: Xét ΔAOK và ΔCOH có
OA=OC
\(\widehat{AOK}=\widehat{COH}\)
OK=OH
Do đó; ΔAOK=ΔCOH
=>\(\widehat{OAK}=\widehat{OCH}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//CH
c: OH=OK
H,O,K thẳng hàng
Do đó: O là trung điểm của HK
d: AH\(\perp\)BD
CK\(\perp\)BD
Do đó: AH//CK
=>AE//CF
Xét tứ giác AECF có
AE//CF
AF//CE
Do đó: AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nen O là trung điểm của EF
3: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
4: Xét ΔOIB và ΔOVD có
\(\widehat{IBO}=\widehat{VDO}\)
OB=OD
\(\widehat{IOB}=\widehat{VOD}\)
Do đó: ΔOIB=ΔOVD
=>BI=DV
Xét : a^5-a = a.(a^4-1) = a.(a^2-1).(a^2+1) = (a-1).a.(a+1).(a^2-4+5)
= (a-2).(a-1).a.(a+1).(a+2)+5.(a-1).a.(a+1)
Ta thấy a-2;a-1;a;a+1;a+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; 1 số khác chia hết cho 4 ; 1 số chia hết cho 5
=> (a-2).(a-1).a.(a+1).(a+2) chia hết cho 2.4.5 = 40 (1)
Lại có : p là số nguyên tố > 2 => p lẻ => p = 2k+1 ( k thuộc N sao )
=> (p-1).(p+1) = 2k.(2k+2) = 4.k.(k+1)
Vì k;k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> (p-1).(p+1) chia hết cho 8
=> 5.(p-1).p.(p+1) chia hết cho 5.8=40 (2)
Từ (1) và (2) => a^5-a chia hết cho 40
Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 40
=> (a^5+b^5+c^5+d^5)-(a+b+c+d) chia hết cho 40
Mà a^5+b^5+c^5+d^5 chia hết cho 40 => a+b+c+d chia hết cho 40
Tk mk nha