Hình vẽ: https://imgur.com/a/XMi3sym
Cho tam giác ABC với E, F bất kỳ trên cạnh CA, AB. BE cắt CF tại K. M, N đối xứng với K qua B, C. MF, NE cắt CA, CB tại P, Q. Chứng minh rằng PQ // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)
mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )
Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )
TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)
=> \(\Delta EBK\)cân tại E
b , Đề bài thiếu :>
a) gócm=gócb =gócc=gócn mn // bc
b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf
c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn
Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy
a, C/m t/giác IEF cân
b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF
c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH
Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM
có làm mới có ăn
co lam thi moi co an tu di ma lam di anh hai