Cho đa thức f(x)=ax+b
Tìm điều kiện của các hằng số a,b để: f(x1+x2)=f(x1)+f(x2)
với mọi x thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)
\(f\left(x1\right)=ax1+b;f\left(x2\right)=ax2+b;f\left(x1+x2\right)=a\left(x1+x2\right)+b\)
f(x1+x2)=ax1+ax2+b=ax1+ax2+2b
=> b=0; mọi a
Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b
P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b
Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b
=> b = 2b => b - 2b = 0 => -b = 0 => b = 0
Vậy khi b = 0 , a thì đẳng thức P(x1 + x2) = P(x1) + P(x2)