K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

A B C D M N O câu a CHỨNG Minh AB = DC CHỨ sao AB = BC ĐC

A) XÉT \(\Delta ABC\)VÀ \(\Delta CDA\)

\(\widehat{ACB}=\widehat{CAD}\)( VÌ AD // BC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )

AC LÀ CẠNH CHUNG

\(\widehat{BAC}=\widehat{DCA}\)( VÌ AB // DC , HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG )

=> \(\Delta ABC=\Delta CDA\left(g-c-g\right)\)

=> AD = BC (HAI CẠNH TƯƠNG ỨNG )

=> AB = DC ( HAI CẠNH TƯƠNG ỨNG )

TA CÓ M LÀ TRUNG ĐIỂM CỦA BC 

\(\Rightarrow BM=CM=\frac{BC}{2}\left(1\right)\)

TA CÓ N LÀ TRUNG ĐIỂM CỦA AD 

\(\Rightarrow AN=DN=\frac{AD}{2}\left(2\right)\)

TỪ (1) VÀ (2)

\(BM=CM=\frac{BC}{2}\)

\(AN=DN=\frac{AD}{2}\)

MÀ AD = BC ( CMT)

=>  \(BM=CM=AN=DN\)

XÉT \(\Delta BAM\)VÀ \(\Delta DCN\)CÓ 

\(BA=DC\)(VÌ \(\Delta ABC=\Delta CDA\))

\(\widehat{ABM}=\widehat{CDN}\)(VÌ  \(\Delta ABC=\Delta CDA\))

\(BM=DN\left(cmt\right)\)

=>\(\Delta BAM=\Delta DCN\left(c-g-c\right)\)

=> AM = CN (HAI CẠNH TƯƠNG ỨNG )

c) XÉT TỨ GIÁC ABCD

ta có \(AD=BC\left(cmt\right);AB=CD\left(cmt\right)\)

=> TỨ GIÁC ABCD LÀ HÌNH THOI

=> CÁC ĐƯỜNG CHÉO CẮT NHAU TẠI TRUNG ĐIỂM CỦA NÓ

=> \(OA=OC;OB=OD\)

5 tháng 8 2020

mượn hình của Lê Trí Tiên  làm tiếp câu (d)

vì M là trung điểm AD và O là trung điểm của AC => ON là đường trung bình tam giác ACD

=> ON //DC (1)

chứng minh tương tự ta có: OM là đường trung bình tam giác ACB

=> OM // AB mà AB // CD => OM // DC (2)

từ (1) (2) => M,O,N thằng hàng (đpcm)

5 tháng 8 2020

Bạn tự vẽ hình nhé

a, Xét \(\Delta ABC\)và \(\Delta CDA\), ta có

        \(\widehat{DAC}=\widehat{ACB}\left(gt\right)\)

          AC: cạnh chung

      \(\widehat{BAC}=\widehat{DCA}\left(gt\right)\)

do đó: \(\Delta ABC=\Delta CDA\left(g.c.g\right)\)

      =>AD=BC(2 cạnh tương ứng)

      =>AB=DC(2 cạnh tương ứng)

b, Ta có: BC=AD(CMT)

          =>\(\frac{1}{2}BC=\frac{1}{2}AD\)=>MC=AN

Xét \(\Delta MAC\)và \(\Delta NCA\), ta có:

                  MC=AN(CMT)

   \(\widehat{NAC}=\widehat{MCA}\) (2 góc so le trong)

                 AC:cạnh chung

do đó: \(\Delta MAC=\Delta NCA\left(c.g.c\right)\)

       =>AM=CN(2 cạnh tương ứng)

c, Xét \(\Delta OAD\)và \(\Delta OCB\), ta có:

        \(\widehat{DAO}=\widehat{BCO}\)(2 góc so le trong)

                BC=AD(CMT)

       \(\widehat{OBC}=\widehat{ADO}\)(2 góc so le trong)

do đó \(\Delta AOD=\Delta COB\left(g.c.g\right)\)

      => OA=OC(2 cạnh tương ứng)

      =>OB=OD(2 cạnh tương ứng)

d,Sử dụng tiên đề Ơ-Clit...Bạn suy nghĩ đi mk chưa có cách giải chi tiết

Chúc bạn học tốt

1 tháng 11 2021

 phần d bn k lm ak

a: Xét tứ giác ABCD có

AD//BC

AB//DC

Do đó: ABCD là hình bình hành

Suy ra: AB=DC; AD=CB

20 tháng 10 2021

Cứu cái j cơ

????????????????????????

a: Xét ΔABC và ΔCDA có 

\(\widehat{BAC}=\widehat{DCA}\) 

AC chung

\(\widehat{ACB}=\widehat{CAD}\)

Do đó: ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

BD chung

AD=CB

AB=CD

Do đó: ΔADB=ΔCBD

30 tháng 7 2017

Tự vẽ hình.

a) Vì AD // BC nên \(\widehat{DAC}=\widehat{BCA}\) (so le trong) (1)

AB // CD \(\Rightarrow\widehat{BAC}=\widehat{DCA}\) (so le trog) (2)

Xét \(\Delta ABC;\Delta CDA:\)

_ (1)

_ (2)

_ AC chung

\(\Rightarrow\Delta ABC=\Delta CDA\left(g.c.g\right)\)

\(\Rightarrow BC=DA\)

\(\Rightarrow BM+CM=AN+DN\)

\(BM=CM;AN=DN\)

\(\Rightarrow CM=AN\)

b) Xét \(\Delta OAD;\Delta OCB:\)

\(\widehat{OAD}=\widehat{OCB}\) (so le trog)

\(AD=CB\left(a\right)\)

\(\widehat{ADO}=\widehat{CBO}\) (so le trong)

\(\Rightarrow\Delta OAD=\Delta OCB\left(g.c.g\right)\)

\(\Rightarrow OA=OC;OD=OB\) (2 cặp cạnh tương ứng)

c) Xét \(\Delta NDO;\Delta MBO:\)

\(ND=MB\) (suy từ câu a)

\(\widehat{NDO}=\widehat{MBO}\) (so le trog)

\(DO=BO\) (câu b)

\(\Rightarrow\Delta NDO=\Delta MBO\left(c.g.c\right)\)

\(\Rightarrow\widehat{NOD}=\widehat{MOB}\)

\(\widehat{NOD}+\widehat{BON}=180^o\) (kề bù)

\(\Rightarrow\widehat{MOB}+\widehat{BON}=180^o\)

\(\Rightarrow M,O,N\) thẳng hàng.

30 tháng 7 2017

Bổ sung thêm ở câu a) nhé!

... \(\Rightarrow CM=AN\)

Xét \(\Delta AMN;\Delta CNM:\)

\(AN=CM\) (c/m trên)

\(\widehat{ANM}=\widehat{CMN}\) (so le trog)

MN chung

\(\Rightarrow\Delta AMN=\Delta CNM\left(c.g.c\right)\)

\(\Rightarrow AM=CN\rightarrowđpcm\).

a: Xét tứ giác ABMC có

E là trung điểm chung của AM và BC

góc BAC=90 độ

Do đó: ABMC là hình chữ nhật

b: Xét ΔBAC có BD/BA=BE/BC

nên DE//AC

=>EN//AC

Xét tứ giác ANEC có

AN//EC

AC//NE

=>ANEC là hình bình hành