Giải phương trình :
\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
MN giúp mk nhanh với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)
Ta được hệ:
\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)
\(\Rightarrow a^2+\left(1-a\right)^3=1\)
\(\Leftrightarrow a^3-4a^2+3a=0\)
\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt[]{2x-1}\sqrt[3]{5x+3}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{2-2\sqrt[]{2x-1}+2\sqrt[]{2x-1}-\sqrt[]{2x-1}.\sqrt[3]{5x+3}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{2\left(1-\sqrt[]{2x-1}\right)+\sqrt[]{2x-1}\left(2-\sqrt[3]{5x+3}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4\left(x-1\right)}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}\left(x-1\right)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(-\dfrac{4}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}\right)\)
\(=-\dfrac{4}{1+1}-\dfrac{5\sqrt[]{1}}{4+4+4}=-\dfrac{29}{12}\)
ĐKXĐ: x > -3
y > -1
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a\ge0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\) thì hệ đã cho trở thành
\(\hept{\begin{cases}2a-3b=2\\a-b=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2a-3b=2\\2a-2b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}b=0\\a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}=1\\\sqrt{y+1}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-1\end{cases}\left(tm\right)}\)
CÁi này easy mà .-.
\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)
\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)
\(\Rightarrow x-6=0\Rightarrow x=6\)
\(ĐK:x\ge1\)
\(PT\Leftrightarrow x+3-4\sqrt{x+3}+4+\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{x+3}-2\right)^2+\sqrt{x-1}=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+3}=2\\x-1=0\end{cases}\Leftrightarrow}x=1\left(tm\right)\)
Lời giải:
Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:
\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)
Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.
Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$
$\Leftrightarrow x=2x-3=3$ (thỏa mãn)
Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$
$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)
Vậy $x=3$ hoặc $x=1$
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^