K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

Ta có : (a + b + c) \(⋮\)2

=> \(\left(a+b+c\right)^2⋮2\)

=> \(\left(a+b+c\right)\left(a+b+c\right)⋮2\)

=> \(\left(a+b+c\right).a+\left(a+b+c\right).b+\left(a+b+c\right).c\)

=> \(a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)⋮2\)

Vì \(2\left(ab+bc+ca\right)⋮2\)

=> \(a^2+b^2+c^2⋮2\left(\text{đpcm}\right)\)

31 tháng 7 2020

Bài làm:

Ta có: Vì a+b+c chia hết cho 2

=> a+b+c chẵn

Nên ta xét các TH sau:

+Nếu: Cả 3 số a,b,c đều chẵn

=> a2,b2,c2 đều chẵn

=> a2+b2+c2 chia hết cho 2

+Nếu: Chỉ có 1 số trong 3 số a,b,c chẵn

G/s a là số chẵn, b và c là 2 số lẻ

=> a2 chẵn và b2,c2 lẻ

=> a2+b2+c2 chẵn

=> đpcm

27 tháng 10 2016

Ta có :

\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)

\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2

\(\Rightarrow a+b+c+d+e\)chia hết cho 2

Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )

\(\Rightarrow\)a+b+c+d+e là hợp số

Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.

28 tháng 10 2016

em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi. 

em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .

a^2+b^2+c^2+d^2+e^2 chia hết cho 2

* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0

*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn

như vậy a+b+c+d+e cũng là một số chắn

mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2  vậy a+b+c+d+e=2k với k khác 1 => dpcm.

( ở đây em chỉ cần khác 2  loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)

1: a chia 3 dư 2 nên a=3k+2

4a+1=4(3k+2)+1

=12k+8+1

=12k+9=3(4k+3) chia hết cho 3

2:

a: 36 chia hết cho 3x+1

=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)

mà x là số tự nhiên

nên 3x+1 thuộc {1;4}

=>x thuộc {0;1}

b: 2x+9 chia hết cho x+2

=>2x+4+5 chia hết cho x+2

=>5 chia hết cho x+2

=>x+2 thuộc {1;-1;5;-5}

=>x thuộc {-1;-3;3;-7}

mà x thuộc N

nên x=3

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

19 tháng 10 2015

a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 

b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5

25 tháng 11 2018

Ta có:

+) a2=3k=> abc chia hết cho 3=>abc-6bc chia hết cho 3 (k e N)

với TH ko số nào chia 3 dư 1

+) a bình : 3(dư 1)=>a2-b2=c2 trong đó c chia hết cho 3 nên abc-6bc vẫn như thé chia hết cho 3 

(ĐPCMA)

24 tháng 10 2015

+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a: 

a- a = a.(a-1) = a.(a - 1).(a+1) 

Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3

+) khi đó , với mọi số tự nhiên a; b;c ta có: (a-a) + (b-b) + (c- c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - (a + b + c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - 2016  luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a+ b+ c3)  chia hết cho cả 2 và 3

Vậy...

15 tháng 8 2019

Ta có: a + b + c \(⋮\)2

Vì các số có số mũ là 2 thì luôn là số chẵn => luôn chia hết cho 2.

Nên: a \(⋮\)2; b\(⋮\)2; c2 \(⋮\)2.

Mà cả a2, b2, c2 đều chia hết cho 2 nên a2 + b2 + c2 \(⋮\)2

( Nếu ko đúng thì thôi nhá, mình chỉ nghĩ là như zậy thoi ) :(((