1.Cho tam giác ABC nhọn phân giác AE.
a) Chứng minh AB.AC>AE²
2.Cho hình thang ABCD có M và N là trung điểm vủa AD và DC.AC cắt BM và BN tại E và F.Chứng minh AE=EF=FC
Giúp mình giải 2 câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
Bài 1 :
Kẻ AH cắt BC tại O ta có:
+\(AO\perp CB\) ( H là trực tâm )
+\(DK\perp CB\)(gt)
=> AO // DK => AH//DK
=> TG AHKD là hình thang
Bài 2 :
Hình thang ABCD => AB//DC
=>+ AB// EC
+AB//DE
Xét tg ABCE có :
+AB=EC ( = DC/2)
+AB//EC (CMT)
=> TG ABCE là hình bh (dh3) => AE// BC
Xét tg ABED chứng minh tương tự trên => tg ABED là hình bh (dh 3) => AD= BE
+