K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020


\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)

\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)

\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)

\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)

=> A < 2

31 tháng 3 2018

ta có (a-1)2 ≥ 0 ∀a

<=> a2-2a+1 ≥ 0

<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)

<=> a2+2a+1 ≥ 4a

<=> (a+1)2 ≥ 4a

CM tương tự ta đc

(b+1)2 ≥ 4b

(c+1)2 ≥ 4c

Nhân các vế với nhau ta có

[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c

<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc

<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)

<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)

19 tháng 7 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)

\(1-\frac{1}{\left(2n+3\right)}\)

cách làm này ko biết sai hay đúng nên hãy cẩn thận

19 tháng 7 2018

hơi khó bn ơi

26 tháng 3 2019

Nhầm ,chỉ có một + 1/3.5 thôi các bạn nhé

11 tháng 5 2018

dấu này là mũ hay là gì ? ^^^^^