Chứng minh rằng: với mọi số nguyên n >1 , số A = n4+4n là một hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Xét các trường hợp chẵn
- n chẵn thì A chia hết cho 2
- n lẽ đặt n = 2k + 1 k ∈ N * .
Ta có
A phân tích được tích của 2 thừa số vậy A là hợp số .
\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)
\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)
Gọi d=ƯCLN(2n+3;4n+8)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+8)=1
=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2
Bạn tham khảo câu trả lời của anh alibaba Nguyễn ở đây nhé:
https://olm.vn/hoi-dap/detail/77939936222.html
Câu hỏi của Nguyễn Thị Thảo - Toán lớp 7 - Học toán với OnlineMath