Cho a, b là hai số không chia hết cho 5. CMR: a4 + b4 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này lớp 6 mà bạn
Đặt c1=a1-b1, ... , c5=a5-b5.
Có c1+ c2 + ...+ c5
= (a1-b1)+(a2-b2)+...+(a5-b5)
= (a1+a2+...+a5)-(b1+b2+...+b5)
=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)
=> Trong 5 số c1,...,c5 có một số chẵn vì từ c1 đến c5 có 5 số
=> Trong các số a1-b1,...,a2-b2 có một số chẵn
Vậy ... (đpcm)
Ta có: a, b là các số tự nhiên không chia hết cho 5
=> Chữ số cuối cùng các số a, b có thể là 1, 2, 3, 4, 6, 7, 8,9
mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...
=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6
=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6
=> Chữ số tận cùng các số a^4m -1 và b^4m -1 là 0 hoặc 5
=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)
=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5
Hoặc nếu em đã được học kiến thức đồng dư:
a, b là các số không chia hết cho 5
=> a^4 , b^4 có chữ số tận cùng là 1, 6
=> a^4m, b^4m có chữ số tận cùng 1, 6
=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)
Gọi dãy số 5 chứ số tự nhiên liên tiếp là x; x+1; x+2; x+3; x+4
Giả sử x chia hết cho 5 => ĐPCM
Giả sử x không chia hết cho 5 tức là x chia 5 dư tối đa là 4 tức là x+4 tối đa sẽ chia hết cho5
Vậy dãy 5 số tự nhiên liên tiếp sẽ chia hết cho 5
a=5n+1
b=5k+2
a^2=1 ﴾mod 5﴿
b^2=4 ﴾mod5﴿
﴾a^2+b^2﴿=0 ﴾mod 5﴿
không được dùng thì khai triển ra
a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2
25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5
`a, 350, 222, 456, 800`
`b, 125, 350, 555, 800`
`c, 350, 800`
`d, 222, 456`
`e, 125, 555`
`f, 222, 555, 456`
`g, 350, 125, 800
a) Chia hết cho 2: 500; 580
Chia hết cho 5: 540; 550
Chia hết cho 3: 300; 360
Chia hết cho 9: 540; 450
b) Vừa chia hết cho 2 vừa chia hết cho 5: 500; 600
c) Chia hết cho 5 nhưng không chia hết cho 2: 405; 505
Đề bài sai
Ví dụ: \(a=b=1\) đều ko chia hết cho 5
Và \(a^4+b^4=2\) cũng không chia hết cho 5 nốt