K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

13 tháng 1 2018

tớ chỉ làm phần 1 thôi

1.  ta có (x+5)y-x=10

=>(x+5)y-x-5=10-5

=>(x+5)y-(x+5)=5

=>(x+5)(y-1)=5

lập bảng xét giá trị của x,y \(\in Z\)

Bạn tự làm tiếp nhé -_-

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

11 tháng 12 2021

\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)

Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)

NV
13 tháng 2 2022

- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)

\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)

- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1

Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2

\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên

Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)

21 tháng 10 2023

tại sao y<0 lại ko thuoc Z

26 tháng 8 2021

\(8\left|x-2017\right|=25-y^{2\text{​​}}\)

\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)

Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)

31 tháng 3 2015

                xy=x+y

nên :        xy-(x+y)=0

               xy-x-y    =0

               x(y-1)-y  =0 suy ra x(y-1)-(y-1)=1

                (x-1)(y-1)=1 

ta có

     X - 1

  -1

       1

 

     Y - 1

 -1

       1

 

        X

0

2

 

         Y

0

2

 

 

 

   
31 tháng 3 2015

x=0 , y=0

x=2 , y=2

10 tháng 3 2022

-Lú thiệt sự.... :))

10 tháng 3 2022

-Lú thiệt sự.... :))

13 tháng 5 2021

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y

13 tháng 5 2021

MÁY TÔI LỖI ,SORRY

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y