K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

a) \(y^2\left(x+y\right)-zx-zy\)

\(=y^2\left(x+y\right)-z\left(x+y\right)\)

\(=\left(x+y\right)\left(y^2-z\right)\)

b) \(x^2y+xy^2-x-y\)

\(=\left(x^2y-x\right)+\left(xy^2-y\right)\)

\(=x\left(xy-1\right)+y\left(xy-1\right)\)

\(=\left(xy-1\right)\left(x+y\right)\)

c) \(x^2+x-y^2+y\)

\(=\left(x^2-y^2\right)+\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

d) \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

23 tháng 7 2020

Giống nhau như đúc m ạ :((

a: A=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

30 tháng 7 2023

bn làm ơn giải chi tiết đi vs ạ

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

a: A=yx-4y-5x+20

=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

c: \(D=xyz-xy-yz-xz+x+y+z-1\)

=xy(z-1)-yz+y-xz+z+x-1

=xy(z-1)-y(z-1)-z(x-1)+(x-1)

=(z-1)(xy-y)-(x-1)(z-1)

=(z-1)(xy-y-1)

=(11-1)(9*10-10-1)

=10*79=790

6 tháng 11 2016

1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)

2. C. \(\left(x-y\right)\left(x-y-3\right)\)

3. D. \(\left(x-2\right)\left(x+1\right)\)

4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)

5. D. \(3\left(x-2y\right)\)

6 tháng 11 2016

1. Trong các kết quả sau kết quả nào sai

A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)

B. x(y-1) +3(y-1)= -(1-y)(x+3)

C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)

2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:

A. (x+y)(x-y+3)

B. (x-y)(2x-2y+3)

C. (x-y)(x-y-3)

D. Cả 3 câu đều sai

3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử

A. (x-2)x

B. (x-2)^2.x

C. x(2x-4)

D. (x-2)(x+1)

4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử

A. (xy-2y)(5x^2-15x^2)

B. y(x-2)(5x^2-15x^2)

C. y(x-2)5x(x-3)

D. (xy-2y)5x(x-3)

5. Kết quả phân tích đa thức 3x-6y thành nhân tử là

A. 3(x-6y)

B. 3(3x-y)

C. 3(3x-2y)

D. 3(x-2y)

22 tháng 5 2018

a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)

b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)

\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)

\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)

30 tháng 8 2021

a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)

c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)

d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)