-2x2+5x-7/2<0 với mọi giá trị của x
Giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
\(5x-x^2-7=-x^2+5x-7=-\left(x^2-5x+7\right)\)
\(=-\left(x^2-2x\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7\right)\)
\(=-\left[\left(x^2-2x\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}+7\right]\)
\(=-\left[\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\right]< 0\forall x\)
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)
\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)
Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên
hay P là số nguyên(đpcm)
\(5x-x^2-7=-\left(x^2-5x+7\right)\)
\(=-\left(x^2-5x+\dfrac{25}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{5}{2}\right)^2-\dfrac{3}{4}\)
Ta có: \(-\left(x+\dfrac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{5}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)
Vậy biểu thức bé hơn 0 với mọi giá trị của x.
\(A=a+\frac{2}{a^2}=\frac{1}{2}a+\frac{1}{2}a+\frac{2}{a^2}\ge3\sqrt[3]{\frac{1}{2}a.\frac{1}{2}a.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)
Dấu \(=\)khi \(\frac{1}{2}a=\frac{2}{a^2}\Leftrightarrow a=\sqrt[3]{4}\).
\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)
\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)
hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )
2x2 + 2x + 7
= 2( x2 + x + 1/4 ) + 13/2
= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )
\(-2x^2+5x-\frac{7}{2}=-2\left(x-\frac{5}{4}\right)^2-\frac{3}{8}\)
Do \(-2\left(x-\frac{5}{4}\right)^2\le0;\forall x\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{3}{8}\le-\frac{3}{8}< 0;\forall x\) (đpcm)