a,\(\sqrt{9-4\sqrt{5}}\)
b,\(\sqrt{15-6\sqrt{6}}+\sqrt{15+6\sqrt{6}}\)
TÍNH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ
Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc
\(a,=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=\sqrt{6}-1\\ b,=3-2\sqrt{2}+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\\ c,=\sqrt{\left(\sqrt{5}+2\right)^2}-\left(\sqrt{5}-1\right)=\sqrt{5}+2-\sqrt{5}+1=3\)
a) \(=2\sqrt{6}-4+\sqrt{\left(3-\sqrt{6}\right)^2}=2\sqrt{6}-4+3-\sqrt{6}=-1+\sqrt{6}\)
b) \(=\left|3-2\sqrt{2}\right|+\sqrt{\left(3\sqrt{2}+1\right)^2}=3-2\sqrt{2}+3\sqrt{2}+1=4+\sqrt{2}\)
c) \(=\sqrt{\left(\sqrt{5}+2\right)^2}-\left|1-\sqrt{5}\right|=\sqrt{5}+2+1-\sqrt{5}=3\)
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)
\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)
\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)
\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)
\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)
\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)
\(=7-\sqrt{21}+\sqrt{21}-3\)
\(=4\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
a)
\((4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)
\(=2(4^2-15)=2\)
b)
\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}=\sqrt{(8+2\sqrt{15})+2+2(\sqrt{6}+\sqrt{10})}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3}+\sqrt{2})^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
c)
\((\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}):(2\sqrt{\sqrt{5}-2})\)
\(=(\sqrt{(5+2\sqrt{9\sqrt{5}-19})(\sqrt{5}+2)}-\sqrt{(7-\sqrt{5})(\sqrt{5}+2)}):(2\sqrt{(\sqrt{5}-2)(\sqrt{5}+2)})\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{(9\sqrt{5}-19)(9+4\sqrt{5})}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{9+5\sqrt{5}}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(9+5\sqrt{5})+2\sqrt{9+5\sqrt{5}}+1}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(\sqrt{9+5\sqrt{5}}+1)^2}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{9+5\sqrt{5}}+1-\sqrt{9+5\sqrt{5}}]:2=\frac{1}{2}\)
d)
\((\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}})^2=18+2\sqrt{(9+\sqrt{5})(9-\sqrt{5})}=18+4\sqrt{19}\)
\(\Rightarrow \sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}=\sqrt{18+4\sqrt{19}}\)
Do đó:
\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}=\frac{\sqrt{18+4\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{2+1-2\sqrt{2.1}}\)
\(=\frac{\sqrt{2}.\sqrt{9+2\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{(\sqrt{2}-1)^2}=\sqrt{2}-(\sqrt{2}-1)=1\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
a) \(\sqrt{6-\sqrt{11}}\cdot\sqrt{6+\sqrt{11}}\)
\(=\sqrt{\left(6-\sqrt{11}\right)\left(6+\sqrt{11}\right)}\)
\(=\sqrt{6^2-\left(\sqrt{11}\right)^2}\)
\(=\sqrt{36-11}\)
\(=\sqrt{25}\)
\(=\sqrt{5^2}\)
\(=5\)
b) \(\sqrt{8+\sqrt{15}}\cdot\sqrt{8-\sqrt{15}}\)
\(=\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}\)
\(=\sqrt{8^2-\left(\sqrt{15}\right)^2}\)
\(=\sqrt{64-15}\)
\(=\sqrt{49}\)
\(=\sqrt{7^2}\)
\(=7\)
a: \(=\sqrt{6^2-11}=\sqrt{25}=5\)
b: \(=\sqrt{8^2-15}=\sqrt{49}=7\)