K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2020

\(\Leftrightarrow sin^6x-sin^{10}x+cos^6x-cos^{10}x=0\)

\(\Leftrightarrow sin^6x\left(1-sin^4x\right)+cos^6x\left(1-cos^4x\right)=0\)

Do \(\left\{{}\begin{matrix}1-sin^4x\ge0\\1-cos^4x\ge0\end{matrix}\right.\) \(\forall x\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin^6x\left(1-sin^4x\right)=0\\cos^6x\left(1-cos^4x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow sin2x=0\)

\(\Rightarrow x=\frac{\pi}{2}+\frac{k\pi}{2}\)

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

31 tháng 5 2020

§2. Giá trị lượng giác của một cung

24 tháng 6 2017

Phương trình đã cho tương đương với:

\(cos2x+\left(cos6x+cos10x\right)=0\)

\(\Leftrightarrow cos2x+2.cos8x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\1+2cos8x=0\end{matrix}\right.\)

+ TH1:

\(cos2x=0\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\left(k\in Z\right)\)

+ TH2:

\(1+2cos8x=0\Leftrightarrow cos8x=-\dfrac{1}{2}=cos\dfrac{2\pi}{3}\)

\(\Leftrightarrow8x=\pm\dfrac{2\pi}{3}+k2\pi\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{12}+\dfrac{k\pi}{4}\end{matrix}\right.\) \(\left(k\in Z\right)\)

Vậy phương trình gồm các họ nghiệm: \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\), \(x=\dfrac{\pi}{12}+\dfrac{k\pi}{4}\), \(x=-\dfrac{\pi}{12}+\dfrac{k\pi}{4}\) với \(k\in Z\)

15 tháng 6 2016

A=\(\frac{\left(cos7x+cos10x\right)-\left(cos8x+cos9x\right)}{\left(sin7x+sin10x\right)-\left(sin8x+sin9x\right)}\) =\(\frac{2cos\frac{17x}{2}.cos\frac{3x}{2}-2cos\frac{17x}{2}.cos\frac{x}{2}}{2sin\frac{17x}{2}.cos\frac{3x}{2}-2sin\frac{17x}{2}.cos\frac{x}{2}}\)

=\(\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}\)=\(\frac{cos\frac{17x}{2}}{sin\frac{17x}{2}}\)=cotg\(\frac{17x}{2}\)

 

19 tháng 5 2019

\(A=\frac{cos7x-cos8x-cos9x+cos10x}{sin7x-sin8x-sin9x+sin10x}=\frac{(cos10x+cos7x)-\left(cos9x+cos8x\right)}{\left(sin10x+sin7x\right)-\left(sin9x+sin8x\right)}.\) 

     \(=\frac{2cos\frac{17x}{2}cos\frac{3x}{2}-2cos\frac{17x}{2}cos\frac{x}{2}}{2sin\frac{17x}{2}cos\frac{3x}{2}-2sin\frac{17x}{2}cos\frac{x}{2}}=\frac{2cos\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}{2sin\frac{17x}{2}\left(cos\frac{3x}{2}-cos\frac{x}{2}\right)}=cotan\frac{17x}{2}.\)  

5 tháng 9 2021

Đề kiểu gì vậy?

Đề thiếu rồi bạn

NV
15 tháng 10 2020

Ủa đề yêu cầu làm gì bạn? Đây ko phải là phương trình

15 tháng 10 2020

câu nâng cao á

21 tháng 5 2018

\(P=\dfrac{1+2sin3xcos3x-\left(1-2sin^23x\right)}{1+2sin3xcos3x+2cos^2x-1}=\dfrac{2sin3xcos3x+2sin^23x}{2sin3xcos3x+2cos^23x}=\dfrac{sin3x}{cos3x}=tan3x\)

\(x=\dfrac{7\pi}{4}\Rightarrow P=tan\dfrac{21\pi}{4}=tan\dfrac{\pi}{4}=1\)