K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

a) Số số hạng là : \(\frac{\left(4n-4\right)}{4}+1=\frac{4\left(n-1\right)}{4}+1=n-1+1=n\)

Tổng của dãy trên là : \(\frac{\left(4+4n\right)\cdot n}{2}=2n\left(n+1\right)\)

Ta có : \(2n\left(n+1\right)=2964\)

=> \(n\left(n+1\right)=2964:2=1482=38\cdot39\)

=> n = 38

b) \(\frac{1}{2}+1+\frac{3}{2}+...+\frac{n}{2}=33\)

=> \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{n}{2}=33\)

=> \(\frac{1+2+3+...+n}{2}=33\)

=> \(1+2+3+...+n=66\)

Số số hạng là : \(\left(n-1\right):1+1=n\)

Tổng : \(\frac{\left(1+n\right)\cdot n}{2}=\frac{n\left(n+1\right)}{2}\)

=> \(\frac{n\left(n+1\right)}{2}=66\)

=> \(n\left(n+1\right)=66\cdot2=132=11\cdot12\)

=> n = 11

P/S : K bt có đúng k nx

19 tháng 12 2023

Em con quá non

10 tháng 4 2018

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)

=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)

=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)

=>24<28x<231

=>28x\(\in\){25;26;27;28;.............................;230}

=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224

=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}

Vậy x\(\in\) {1;2;3;4;5;6;7;8}

\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)

\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)

\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)

\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)

=>3\(⋮\)\(\frac{1}{6}+x\)

=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}

Ta có bảng:

\(\frac{1}{6}+x\)-11-33
x\(-1\frac{1}{6}\)\(1\frac{1}{6}\)\(-3\frac{1}{6}\)3\(\frac{1}{6}\)

Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}

Chúc bn học tốt

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

25 tháng 12 2018

Sau khi ib với Hoàng Nguyễn  thì đề bài như sau

Tìm \(n\inℕ\)biết

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

ĐKXĐ: n > 1

Ta đi c/m bài toán tổng quát

\(\frac{1}{\sqrt{a-1}+\sqrt{a}}=\frac{\sqrt{a}-\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

                                  \(=\frac{\sqrt{a}-\sqrt{a-1}}{a-a+1}\)

                                   \(=\sqrt{a}-\sqrt{a-1}\)

Áp  dụng vào bài toán đc

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=11\)

\(\Leftrightarrow\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}=11\)

\(\Leftrightarrow\sqrt{n-1}-1=11\)

\(\Leftrightarrow\sqrt{n-1}=12\)

\(\Leftrightarrow n-1=144\)

\(\Leftrightarrow n=145\left(TmĐKXĐ\right)\)

Vậy  n = 145

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

28 tháng 8 2020

chịu chưa học

28 tháng 8 2020

Bài làm:

Ta thấy: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; ... ; \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\) (vì n là STN)

=> đpcm

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn